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Abstract

This work presents the development of  a dynamic real-time light spectrum 
acquisition software system utilizing Python, a high-level programming language, 
focusing on optical biosensor applications. This software provides a versatile 
tool for acquiring, processing, and visualizing white light spectra obtained by 
connecting to an Ocean Optics spectrometer.

Dynamic term denotes the system’s ability to adjust acquisition parameters 
in real-time, both in software and hardware, in response to user inputs. This 
adaptability is achieved via thread-based concurrent programming, guaranteeing 
precision sampling time (TS) of  up to 99.98 %. By configuring a 500 ms period 
and an integration time equivalent to 10 ms, offset levels are minimized and 
noise in captured spectra is reduced: SNR reaches up to 38.54 dB, RMSE is 
minimized to 27.83, and a maximum R-Squared of  0.9998 is attained. To 
improve signal quality, a zero-phase second-order Butterworth filter is applied, 
effectively suppressing noise above the normalized 0.04 rad/sample cut-off. Each 
captured spectrum is presented by a graphical user interface, with optimized axis 
boundaries, facilitating real-time analysis. Thus, this work provides an accessible 
methodology for scientists and technicians to develop a real-time data acquisition 
program, free from limitations and technological dependencies associated with 
commercial devices.

Keywords: optical biosensors, python programming, data acquisition, threads, 
spectrometer
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1.  Introduction

The implementation of  sensors enables to comprehend, monitor, and regulate 
the environment. Sensors convert physical phenomena into other physical 
quantities, mainly electrical signals for qualification and quantification purposes. 
Research advances have driven an interdisciplinary path to emerging biosensors 
[1, 2]. The Union of  Pure and Applied Chemistry (IUPAC) defines a biosensor 
as a device that uses specific biochemical reactions to detect compounds usually 
by electrical, thermal, or optical signals [3]. Biosensors are analytical devices 
designed to interpret biological events mediated by two key components: 
biological or biomimetic compounds and transducers. The initial stage of  a 
biosensor involves incorporating an element sensitive to an analyte, while the 
transducer is responsible for detecting the interaction between the analyte and 
the biorecognition component. When the biological recognition reaction occurs, 
a series of  physicochemical changes takes place, which are detected by the 
transducer. The transducer transforms this stimulus into a quantifiable output 
signal [4]. Some transducers recognize the reactions through optical properties 
changes, facilitating direct, real-time, and label-free detection of  biological and 
chemical substances. Electrical components that contain these transducers are 
classified as optical biosensors, constituting the central theme of  discussion in 
this work [5].

In the realm of  optical biosensors, light is the energy source used to interact 
with samples. When light falls on an analyte, a portion of  it may be absorbed 
by the sample’s constituents. Absorbance is a measure that quantifies the ability 
of  a medium to absorb incident light, while transmittance refers to the medium 
capacity to transmit energy. Furthermore, some of  the incident light may be 
reflected off  the surface of  the sample, a phenomenon known as reflectance. 
Reflectance measures the proportion of  incident light that is redirected from 
the sample’s surface. Optical sensors discern and quantify these changes in 
absorbance, transmission, and reflectance to analyze samples for the presence 
of  certain components, such as biomolecules or specific chemical compounds 
[4]. The high specificity of  these sensors, their sensitivity, compactness and cost-
effectiveness enable applications spanning healthcare, environmental monitoring 
and biotechnology [5].

A spectrum represents the amplitudes of  a system’s wave components, and 
light can be seen as this. The measurement of  interactions between light and 
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matter, reactions and measurements of  radiation intensity and wavelength, is 
called spectrometry. Spectrometers are scientific-technical field instruments that 
are used for the analysis of  different forms of  matter in the form of  a signal [6]. 
Spectral data analysis is crucial for many fields, where accurate measurements are 
fundamental. The demand for real-time signal analysis requires faster execution 
of  analytical operations to process all signal components within the designated 
frequency spectrum. Therefore, it is imperative that signal display occurs 
quickly and that all computational procedures persist uninterrupted, adapting to 
variations in the input signal [7].

Ocean Optics spectrometers provide various data acquisition methods, 
which have their own spectroscopic application. It is a software that has a 
graphical interface that provides fast and stable data acquisition and processing 
[8]. However, the license comes with a hefty price tag, making it unaffordable. 
Moreover, it includes additional advanced features that enable users to engage 
with the spectrometer data, incurring an additional expense. Then, this program 
has limitations and technological dependencies associated with commercial 
devices. 

Another software that is capable of  interfacing with these spectrometers is 
MATLAB. This is a platform that provides the Instrument Control Toolbox, 
which allows the connection with Ocean Optics spectrometers. A wide range 
of  tasks can be carried out in MATLAB, such as acquiring a spectrum, adjusting 
integration time, applying dark current and non-linear spectral corrections, and 
viewing all connected devices [9]. Despite being a powerful tool, it is important 
to be aware of  its drawbacks. One significant disadvantage is the high cost 
associated with it. Moreover, licenses need to be renewed annually, which can be 
quite expensive for businesses and organizations relying on MATLAB regularly.

Therefore, to overcome these challenges, it is essential to understand how to 
develop software that allows efficient and seamless access to spectrometer data. 
This would unlock new possibilities for researching and analyzing spectroscopic 
data, eliminating the need to purchase costly licenses or additional software 
packages. 

On the other hand, Python is an open-source high-level programming 
language which has become indispensable in science and technology. Cross-
platform portability, wide variety of  packages and component integration are 
the main characteristics that allow the user to do multiple tasks successfully. Its 
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versatility makes it popular in software development, due to the simplicity in 
syntax and robustness in functionality [10]. 

Another feature of  Python is the fact that it is an interpreted language. This 
means that the Python interpreter alternately reads and performs the calculations 
for each of  the lines of  code. It then repeats this process if  there are no errors. This 
allows to test language functionality while programming [11, 12]. Part of  Python’s 
technological development focuses on communication protocol implementation 
for several purposes, taking advantage of  libraries such as PySerial and PyUsb. 
These protocols generate data exchange and communication between devices, 
which guarantees efficient operation and joint operability between platforms. 
Thus, Python represents aids for developers, who can create reliable and scalable 
solutions for their communication needs across different domains. 

In the field of  spectrophotometry, Python emerges as a functional tool for 
spectral analysis purposes, specifically, to interact with hardware devices like 
spectrometers: Python-SeaBreeze. That is why it is important to understand 
the underlying protocols in this context. Python-SeaBreeze plays a critical role, 
bridging the gap between Python’s analytical capabilities and the complexities 
of  spectrometer communication. SeaBreeze library facilitates communication 
with Ocean Optics spectrometers, offering two distinct backends: cseabreeze, 
which wraps the SeaBreeze library, and pyseabreeze, which uses PyUsb for 
communication [13]. Attributable to Python’s flexibility and scalability, it is 
possible to develop software for the acquisition, processing, and visualization of  
spectrometer data. Developers can focus more on problem-solving and less on the 
complexities of  programming languages, resulting in faster development cycles 
and more efficient software delivery. Due to the versatility of  the language and its 
wide applications in science and engineering, libraries and built-in functions were 
used to process signals, plot, and control sub-processes [14].

To execute Python programs or scripts, a code editor, or an integrated 
development environment, called an IDE, is required [15]. Likewise, it is possible 
to use a shell to write and run Python code. A shell is a command interpreter, which 
means a program that translates commands entered by the user into instructions 
for accessing operating system services [16]. It is possible to access the Python 
Shell once the language has been installed. In this work, Windows PowerShell 
served as the primary tool for executing a variety of  installation processes due to 
the operating system [17]. 
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In addition, although Python can establish parallel processing, its application 
is limited depending on the computer architecture [18]. When a processor has 
only one core, it is not possible to perform multiple tasks simultaneously. On the 
other hand, for multi-core processors, it is possible to create several processes 
running in separate memory spaces and avoiding deadlocks; a concept known as 
parallel programming [19, 20]. A process represents a running program which 
requires resources allocated during its execution. Each process operates within 
its own memory space and execution context. The operating system manages the 
processes, enabling them to run simultaneously [14, 21]. This limitation poses 
problems in efficiently utilizing multiple processors or cores, particularly in 
scenarios where computational tasks need to be executed concurrently.

For this reason, to enhance compatibility with single-core processors, a multi-
threaded task execution flow, referred to as threads, was introduced. One or 
more threads can be executed within a single process and Python provides a few 
modules to create and manipulate these threads. However, due to the Global 
Interpreter Lock (GIL) in CPython (the standard implementation of  Python), 
only one thread can execute Python code at a time. This means that even if  
threads are used, only one thread can be running at any given time [22, 23]. 

However, developing spectral acquisition software using Python presents 
notable challenges. First, the spectrometer’s quality directly affects the precision 
and reliability of  the obtained data. Additionally, successful integration requires 
handling each device’s specific communication protocols, which can be complex 
due to the variety of  interfaces and standards used by manufacturers. Another 
consideration is the libraries and requirements necessary to interact with the 
spectrometer hardware. This involves installing and setting up additional 
dependencies, which can complicate the development process.

In this work, we present a step-by-step methodology for developing a Python 
program to facilitate the real-time acquisition and control of  spectra from sources 
such as halogen light sources, standard flashlights, and LED light sources. The 
spectrometer utilized is the Ocean Optics Flame-T model, which is widely employed 
for acquiring and measuring electromagnetic spectra from optical sensors. 

First, the acquisition system is explained. It starts by presenting the general model 
of  the designed software and continues with the creation of  the environment that 
allows access to the SeaBreeze library functions. This is a process that only needs 
to be performed once. Subsequently, the multithreaded processing is discussed 
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to make the system modifiable in its acquisition parameters and asynchronously. 
Likewise, it is detailed how the recognition is performed with the device, the 
reading of  the spectra, and the adjustment to the signals to increase their quality by 
attenuating the noise present. To conclude the section, the strategy for displaying 
the spectra on the screen and storing them in the computer is mentioned. Finally, 
the spectra obtained are presented and analyzed. In this work, a LED light source 
was used, and 10 spectra captured every 5 seconds were analyzed.

This Python program could be used for real-time detection of  electromagnetic 
spectra generated by optical biosensors. The acquisition of  spectrometer data 
can be applied in measuring optical properties such as transmittance, reflectance, 
or absorbance. Furthermore, acquiring data from the spectrometer in real-time 
enables the calculation of  sensorgrams generated during biofunctionalization 
experiments of  biosensors, which may last for minutes or even hours. This 
Python program can be used for detecting changes in optical properties with the 
help of  specific optical biosensors, depending on the type of  study.

2.  Methodology

This section elaborates on the design of  the acquisition system. A representation 
of  the connections used is depicted in Figure 1. Initially, an LED light source was 
positioned in proximity to the spectrometer detector (Figure 1A). Additionally, a 
Flame T spectrometer was employed (Figure 1B), connected to the computer via 
the USB communication protocol (Figure 1C). The dynamic real-time spectrum 
acquisition system was developed using the Python programming language. 
In this acquisition process, the utilization of  a shell was imperative to establish 
communication with the software. It enabled user data input and provided 
information display regarding the various ongoing processes, as illustrated in 
Figure 1D. Ultimately, throughout the acquisition process, a printout of  each 
spectrum was generated (Figure 1E).

For the development of  this system, we utilized Python version 3.9.6 along 
with numerical data manipulation and visualization libraries such as NumPy 
and Matplotlib. Additionally, we incorporate the spectrum acquisition package 
SeaBreeze, as well as modules for time monitoring (time), thread management 
(threading), and interaction with the operating system to control program inputs 
and outputs (sys). The general block diagram of  the proposed system is shown in 
Figure 2 and it is described in the following sections.
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2.1.   SeaBreeze Execution Environment Set Up

The SeaBreeze library facilitates communication between the spectrometer and 
the computer. Before using SeaBreeze functions, it is necessary to complete an 
installation process for dependencies and libraries. This configuration is a one-
time process, establishing an environment capable of  transmitting data, reading 
hardware parameters, and facilitating the development of  new functions. Figure 
3 illustrates the proposed sequence, with each sub-process detailed below.

F igure 1. Components of  the proposed spectrum acquisition system: (A) representation of  the 
LED light source, (B) example of  Ocean Optics spectrometer, (C) computer compatible with 
the requirements of  the proposed system detailed in section 2.2, (D) example of  the history 

produced when running the system through a terminal, (E) example of  wavelength distribution 
associated with the light source used; spectrum saved at instant 4.5 s after starting the run.

Fi  gure 2. Block diagram illustrating the implementation and configuration of  a dynamic real-
time spectrum acquisition system.
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Fig ure 3. Flowchart outlining the proper configuration of  the environment required 
for utilizing the SeaBreeze library.

2.2.  Req uirements Verifi cation

The initial requirements for establishing communication with the measurement 
hardware are summarized in Table 1. 

Software Version More information
Windows +8 -
Windows PowerShell +3 PowerShell Installation
.NET Framework +4.8 .NET Framework Download
Microsoft Visual C++ +4.8 Microsoft Visual Studio Download

Tab le 1. Software versions. Information revised in 2024.

To begin the installation process on Windows, a minimum of  Windows 8 
or Windows Server 2012 version is required. Operating systems are generated 
through PowerShell, enabling subsequent installations. The version of  PowerShell 
must be reviewed, which, according to current technologies, should be equal to 
or greater than 3.

 Windows PowerShell

PS C:\Windows\system32> $PSVersionTable.PSVersion

Major  Minor  Build  Revision
-----  -----  -----  --------
5      1      19041  4170

In this example, based on the Major and Minor attributes, the Windows 
PowerShell version is 5.1. Configuring the execution policy is necessary. This 
adjustment allows the execution of  scripts, which are essentially programming 
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code designed to automate certain processes, but only those scripts signed by a 
trusted publisher [24, 25].

The first step is to run PowerShell as an administrator and grant permissions 
to access as a superuser. Next, the security level is verified by executing the 
following line:

Windows PowerShell

PS C:\Windows\system32> Get-ExecutionPolicy

If  the result in the terminal is Restricted, the level must be changed to Allsigned. 
The command to set up the execution policy is as follows:

Windows PowerShell

PS C:\Windows\system32> Set-ExecutionPolicy AllSigned

On non-Windows computers running PowerShell 6.0, the default execution 
policy is Unrestricted and cannot be changed [26]. The following prerequisite is 
.NET Framework version 4.8 or higher. This framework facilitates the creation and 
running of  various applications, including desktop apps, web services, and more [27, 
28]. Finally, Microsoft Visual C++ compilation tools are necessary with a version 
greater than or equal to 4.8. These tools are essential for compiling and debugging 
C++ code, which is particularly valuable for low-level device communication and 
hardware control. The SeaBreeze library primarily operates via C/C++, even though 
the interface is in Python, making these tools crucial for its functionality [29, 30].

2.3.  Package Manager Installation

Once the requirements have been fulfilled, the Chocolatey package manager was 
chosen to facilitate the installation process of  the SeaBreeze library, following 
[13, 31] recommendation. The following batch of  commands is executed in 
Windows PowerShell.

Windows PowerShell
PS C:\Windows\system32> Set-ExecutionPolicy Bypass -Scope Process -Force; 

PS C:\Windows\system32> [System.Net.ServicePointManager]::SecurityProtocol = 
[System.Net.ServicePointManager]::SecurityProtocol -bor 3072;

PS C:\Windows\system32> iex ((New-Object System.Net.WebClient).
DownloadString(‘https://chocolatey.org/install.ps1’));
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Note: using semicolon (;) at the end of  each command is a method used to 
distinguish the beginning and end of  long instructions. To verify the correct 
package manager installation, the next command is used:

Windows PowerShell

PS C:\Windows\system32> choco

Chocolatey v2.2.2

This example displays Chocolatey version 2.2.2 installed.

2.4.   Spectrometer Interface Installation 

After installing Chocolatey, basic operation requirements are obtained by executing 
the following code in the terminal.

Windows PowerShell

PS C:\Windows\system32> choco install visualcpp-build-tools

PS C:\Windows\system32> choco install windows-sdk-10.1

PS C:\Windows\system32> choco install windowsdriverkit10

These three packages are essential for compiling and executing SeaBreeze 
code, facilitating hardware manipulation using Python commands executed in 
C++. They collectively streamline the compilation and execution processes. 
Table 2 provides further details on these commands.

Commands Actions

choco install visualcpp-build-
tools Installs Microsoft Visual C++ compilation tools.

choco install windows-
sdk-10.1

Installs Windows 10.1 Software Development Kit 
(SDK) for building applications.

choco install 
windowsdriverkit10

Installs Windows 10 Driver Development Kit 
(WDK), which includes building and deploying 
driver tools (programs that support hardware-
operating system interaction), [13].

Table 2. Requirements installation using Chocolatey.
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The subsequent task is SeaBreeze library installation using the commands below:

Windows PowerShell
PS C:\Windows\system32> git clone https://github.com/ap--/

python-seabreeze.git python-seabreeze;

PS C:\Windows\system32> cd python-seabreeze;
And then,
PS C:\Windows\system32> python -m pip install .;
Or

PS C:\Windows\system32> python -m pip install --no-binary :all: 
seabreeze;

Each line of  code is described below, including the actions it performs.

♦	 Copy a directory: The command git clone https://github.com/ap--/python-
seabreeze.git python-seabreeze, makes a copy of  the GitHub repository 
(according to the specified path) into a new directory on the computer 
named “python-seabreeze”.

♦	 Change directory: The cd python-seabreeze command indicates that you are 
moving to another path, in this case, to the “python-seabreeze” directory, 
which is the one you just cloned. The cd (change directory) statement is 
who performs the directory change action [32].

♦	 Installation: The instruction [python -m pip install .] installs the SeaBreeze 
library in the current directory, which is specified with the dot (.).

♦	 Second way of  installation: If  the binary versions are not available, 
it is possible to install using python -m pip install --no-binary :all: seabreeze. 
This installation is done from source code instead of  using precompiled 
versions, also called binary.

Finally, it was necessary to install the drivers responsible for establishing 
correct communication with the hardware. This was achieved by executing the 
following command.

Windows PowerShell

PS C:\Windows\system32> seabreeze_os_setup

After pressing the Enter key, a confirmation menu appeared on the screen. 
To proceed with the installation, the affirmative option was selected, initiating 
the installation process. Once the previous operation has been completed, it 
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is possible to establish the correct connection between the spectrometer and 
the computer [13]. To verify all previous installations, it is suggested to use the 
commands described in section 2.5.

2.5.  Verification of  the environment

As the last step in setting up the environment, it was necessary to follow the 
following commands, which check that the installation processes were executed 
without errors.

2.6.  Open Windows PowerShell and activate the Python environment

To activate the Python virtual environment, the command “py” was entered into 
the shell, followed by pressing the Enter key:

Windows PowerShell

PS C:\Users\USERNAME> py

Python 3.9.6 (tags/v3.9.6:db3ff76, Jun 28 2021, 15:26:21) 
[MSC v.1929 64 bit (AMD64)] on win32
Type “help”, “copyright”, “credits” or “license” for more 
information.
>>>

This results in displaying the current version of  Python being used. Now, Windows 
PowerShell can be used as the language interpreter, recognizing all the language’s 
commands. It is important to note that the “>>>” symbols now appear, indicating a 
change in shell behavior. With this change, the Python interpreter has been initiated, 
enabling the writing and execution of  Python code in real-time, establishing a text 
input and output environment. This is referred to as the Terminal [33].

2.7.  Import SeaBreeze libraries

These instructions are necessary to establish the connection to the spectrometer.

Python

>>> import seabreeze
>>> seabreeze.use(‘cseabreeze’)
>>> import seatease.cseatease as emu_Spectrometer

After successful import, it is recommended to connect the device to the 
computer and execute the following command block.
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2.8.  Connection verification

With these sentences, it was possible to verify the connection to the spectrometer. 
The result on the screen depends on the model of  the device you are working with.

Python
>>> spec = Spectrometer.from_first_available()
>>> print(spec)
<Spectrometer USB4000:USB4H10178>

In case the physical device is not available, it is still possible to perform the 
verification by means of  a spectrometer simulation. The instructions for this were:

Python

>>> emu_spec = emu_Spectrometer.SeaTeaseAPI().list_devices()[0]
>>> print(emu_spec)
<SeaTeaseDevice: 1>
>>> type(emu_spec)
<class ‘seatease.cseatease.SeaTeaseDevice’>

The print( ) instruction is used to display the list of  available compatible devices 
on the screen. In the case of  the simulation, it only returned <SeaTeaseDevice: 1>. 
Finally, the type( ) instruction displays the type of  variable being introduced. In this 
case, it corresponds to an object of  class ‘seatease.cseatease.SeaTeaseDevice’, which is 
correct and indicates that the virtual device recognition process is correct. The 
spectrometer model utilized in this work was the Ocean Optics Flame-T model. Table 
3 displays some parameters of  this device.

Specification FLAME-T
Integration Time 3.8 ms to 10 seconds

Dynamic Range of  system1 3.4 x 106

Scan rate (max)2 260 Hz

Table 3. Optical and spectroscopic specifications.

1.  Dynamic range of  the system is the range of  the detectable light level and can be thought of  
as the maximum detectable light level at the minimum integration time divided by the minimum 
detectable light level at the maximum integration time.
2.  Scan rate is dependent on the operating computer and not the spectrometer. These figures 
assume a non-real-time operating system [51].
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Before concluding the section, the code statements used in the processes 
described above are presented in Table 4, along with their representation in 
pseudocode form, which is used throughout this work. The process of  installing 
the required libraries, packages, and software was performed only once on the 
computer. Once the device recognition test was successful, we proceeded to 
design the acquisition system, which is detailed in sections 2.9 and 2.10.

Code Pseudocode Action

Spectrometer.

from_first_available()
spec ← Spectrometer_
connection( )

Connection to 
the first available 
spectrometer.

emu_Spectrometer.

SeaTeaseAPI().list_

devices()[0]

emu_Spec ← emu_
Spectrometer_connection( )

Spectrometer 
simulation.

spec._wavelengths
range_wv ← spec_
wavelengths

Reads the accepted 
wavelength range.

spec.integration_time_
micros_limits

range_ti ← spec_
integration_time_micros_
limits

Reads the accepted 
integration time 
interval (us).

Table 4. Pseudocode representation of  the functions to connect to the spectrometer.

2.9.  Device Recognition

According to Figure 2, the proposed acquisition system begins with the recognition 
of  the spectrometer. To initiate the readings, it was necessary to create a PY 
file and import the corresponding libraries into the environment. The following 
libraries were imported: the SeaBreeze library, facilitating the connection with the 
spectrometer; NumPy, for manipulating measurements as matrix data; Matplotlib 
for graph visualization; and time for controlling the flow of  time in data sampling. 
Additionally, threading and signal were utilized to create and manage actions in two 
processing threads: one dedicated to data capture (Main Thread) and the second 
to review and update parameters modifying the hardware acquisition behavior 
according to user requirements. Finally, sys was used to successfully complete the 
script execution.

Subsequently, a connection request loop was executed. This involves attempting 
to connect to the spectrometer, and if  any issues arise, the system continues 
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attempting to connect. If  a certain number of  attempts are exceeded, it indicates 
an unsuccessful connection and prompts the user to either continue in simulation 
mode or terminate the program. This functionality can be beneficial, particularly 
when the device is not owned, and the user wishes to learn how to manipulate 
spectrogram data available with the SeaBreeze library. Another scenario is when 
the computer requires additional time to recognize the external device. 

Upon a successful connection, the system creates an object of  the Spectrometer 
class, which is defined by the model and serial number of  the hardware. In this 
work, the model obtained was <Spectrometer USB4000:USB4H10178>. This 
information is available in the attributes of  the spec variable, specified in the 
pseudocode of  Table 4 and Table 5. With this entity, it became feasible to access 
the captured data and configure spectrometer parameters for the reading, such 
as: integration time TI , number of  samples to be averaged N, and the desired 
wavelength limits wvLmin 

and wvLmax
 according to the desired analysis.

Details regarding these parameters and their modifications are presented in 
section 2.13. The logic used is shown in Table 5 by means of  pseudocode.

Following successful linkage with the spectrometer, a synchronous data 
acquisition system was implemented. This system enables the acquisition of  
spectral data according to a sampling time TS , determined by two factors: the 
user’s choice and the integration time TI required during experimental tests. The 
process is applicable for both available modes, namely using the Hardware or 
Virtual mode. This system is explained in detail in section 2.10.

2.10.  Dynamic Real-Time Data Capture System

This subsection elaborates on the strategies devised to initiate the real-time 
reading process. This system possesses the characteristic of  accommodating the 
user’s external requests and adjusting the reading data accordingly. This is achieved 
while the system acquires signals from the spectrometer, avoiding any undesired 
pauses. Consequently, the system is termed dynamic. Figure 4 illustrates the block 
diagram of  this system.

To ensure that the system can manage external user requests, two processing 
threads have been implemented. These threads enable achieving a concurrency 
effect, allowing two different processes to run seemingly simultaneously. The 
components comprising this system are described below.
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Table 5. Pseudocode of  the Device Recognition process.
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2.11.  I nitiates Processes

In this block, both threads or sub-processes are initialized: the Main thread 
and the secondary thread. In the first thread, all the logic related to real-time 
acquisition was established, and a reading request period of  (TS ) was set. Within 
this interval, the functions related to signal acquisition and processing are 
executed. It is important to note that this time represents the speed of  spectrum 
reading and should not be confused with the integration time (TI ), which is a 
parameter of  the spectrometer.

To enhance the quality of  recorded data, it is necessary to adjust the 
configuration of  the device’s hyperparameters. A methodology was implemented 
to execute these changes, possibly in an aperiodic manner, as indicated by the 
user. This process is carried out in the second thread and does not affect the 
acquisition process of  the main thread.

The hyperparameters mentioned above are:

♦	 Integration time TI .
♦	 Limits of  the wavelengths of  interest wvL.
♦	 Number of  spectra to average NS to attenuate the present noise.
♦	 Instruction to consider the Background Spectrum (BS ) to eliminate it. 

This signal level is captured by the device when the sample to be analyzed 
is absent [34].

F igure 4. Flowchart diagram of  the spectrometer acquisition system.
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Finally, the possibility of  terminating the program at any time by using the Ctrl 
+ C or Ctrl + Z instructions was established. The logic used is illustrated in Table 
6 through pseudocode.

Table 6. Pseudocode of  the initialization process.

Next, sections 2.12 and 2.17 detail the methodology employed in the main 
processing thread as well as in the secondary thread.

2.12.  Main Thread

This block corresponds to the process of  acquisition, digital treatment, and 
display of  the captured signal. Four main actions were established sequentially: 
(i) data reading, (ii) application of  filtering and adjustment techniques, (iii) screen 
display, and (iv) the option of  storing the readings in the computer. Each task is 
described in detail below.

2.13.  Read Request

Every TS seconds, a new read request is made with the hyperparameters allowed 
by the device. These were initialized in the Initiates processes block in section 
2.11. In this work, the accepted hyperparameters corresponding to the device 
model are presented in Table 7.
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Hyperparameters Value

TI  3.8 ms to 10 seconds
wvL [191.0969 – 881.4172] nm
NS Natural number
BS True or False
TS [500 - 5000] ms

Table 7. Options for hyperparameter values employed in the proposed methodology.

The data reading was conducted using the SeaBreeze library, resulting in the 
acquisition of  the spectrum. It was feasible to identify the vector storing the 
wavelengths present and the count vector. These data are contingent on the 
nature of  the light source, as well as the integration time TI configured. Table 8 
presents the main statements used and their corresponding pseudocode.

Code Pseudocode Action

spec.integration_time_micros(TI)
set_integration_
time(TI) Sets the TI for 

spectrum reading.

spec.wavelengths() x ← read_wv() Read vector 
wavelengths.

spec.intensities() y ← read_int() Reads vector of  
intensities.

spec.f.spectrometer.

set_integration_time_micros(Ts)
vset_integration_
time(TI) Sets the TI for 

simulation.

spec.f.spectrometer.get_wavelengths()
x ← read_wv_
virtual()

Read vector 
of  virtual 
wavelengths.

spec.f.spectrometer.get_intensities()
y ← read_int_
virtual() Read vector of  

virtual intensities.

Table 8. Main instructions and their representation in pseudocode.

Finally, with the equivalences provided in Table 8, the logic employed in the 
Read Request block is presented; refer to Table 9.
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2.14.  Signal Processing

This block was responsible for reducing the signal offset and attenuating the noise 
present in the data. Since this work primarily focused on capturing absorbance 
spectra, the signal to be processed indicates the behavior of  the light captured 
solely by the spectrometer. This spectrum can be primarily represented as a 
composition of  three signals: the real physical signal (yp(t )), the noise mainly 
stemming from the effect of  ambient illumination (yl(t )), and the noise caused 
by electromagnetic effects added during the digital conversion processes, ye[n]. 
Therefore, the actual physical signal tends to be contaminated.

The above can be described by equation (1).

y(t) = yp(t) + yl(t),  t≥0,

∴ y[n] = yp[n] + yl[n] + ye[n],  n≥0.
(1)

Where y[n] corresponds to the contaminated digital signal, which can be 
plotted on the computer. The digital signals yl[n] and ye[n] represent the ambient 
and electronic noise, respectively. The objective of  this processing block was 
to decrease the effects of  noise and ambient light (the latter causing an offset). 
Therefore, it is possible to reduce the signal offset by subtracting the minimum 
value present in the reading. 

This is expressed in equation (2).

yadj = y – min{y} (2)
 
where yadj represents a correction of  the signal for the offset effect caused by a base 
noise signal (Background Spectrum). This adjustment aligns the values to estimate the 
maximum readout count and determine its corresponding wavelength. However, 
this process does not eliminate the noise present. Therefore, it was proposed 
to use a low-pass discrete Fourier domain filter with a 2nd order Butterworth 
response. The Butterworth response was chosen because this type of  filter 
maintains a linear phase in the passband [35]. Additionally, due to the nature of  
the analyzed signal, it is necessary to preserve the correspondence between the 
wavelengths and their counts. Therefore, the zero-phase Butterworth filter was 
utilized. This type of  filter has the advantage of  avoiding a lag with respect to the 
original signal. Additionally, the filtering process is performed twice: once in the 
forward direction and the second in the reverse direction in the signal, enhancing 
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the noise attenuation effect [36]. This approach ensures that critical points in 
absorbance spectra detection are not interfered with. Finally, the cut-off  point at 
which the filter began to attenuate the noise was chosen experimentally, set at 0.1.

Table 9. Pseudocode of  the Read Request block.

In this work, the FFT algorithm was implemented using the fft.fft function of  
the NumPy library for the choice of  the cut-off  point [37]. For the design and 
application of  the filter, signal.butter and signal.sosfiltfilt from SciPy were utilized 
[38]. This filtered signal was displayed on the screen and stored in the computer 
in a CSV format file. Table 10 below presents the pseudocode that explains the 
previously detailed process.
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Table 10. Pseudocode of  the Signal Processing block.

2.15.  Display

After signal processing, an interactive graph was created that updates with each 
reading. This means that the display automatically adjusts the limits of  the 
coordinate axes according to the light input to the spectrometer to achieve correct 
visualization. This function updates according to the time TS and accommodates 
changes made by the user, particularly those from the secondary thread. In this 
graph, the most important hyperparameters are the limits of  the wavelengths to 
be displayed, according to the desired experimental process.

Section 3.2 showcases the graphs obtained with the proposed methodology. 
Likewise, the structure of  the code used is presented in Table 11.

Table 11. Pseudocode of the 
Display block.
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2.16.  Save Data

Finally, the recorded and processed samples are stored in a CSV format file. After 
each save action, the acquisition loop restarts to initiate a new read request. As 
previously mentioned, the hyperparameter update and verification process were 
implemented in the secondary thread to avoid halting the acquisition loop and 
to concentrate the functions on signal processing. Section 2.17 provides details 
about this secondary thread.

2.17.  Secondary Thread

This system was designed with the possibility of  making changes in the 
hyperparameters at any time, allowing the updating of  the spectrum capture 
process, as well as in the visualization of  the graph. Due to the use of  the input( 
) function, the program constantly waits for a change. Once a correct input is 
detected, the system updates the old hyperparameters used in the Read Request 
and Display blocks. Subsequently, the system returns to waiting for a new input. 
Each hyperparameter update is performed at the end of  each reading and signal 
processing, avoiding errors during the acquisition process. If  two previous 
consecutive inputs were the same, a workflow was designed to avoid unnecessary 
updates. This process continues until the user finishes the program from the 
terminal, having not only the secondary thread, but also the main thread.

Table 12. Pseudocode of  the secondary thread.
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2.18.  Stop Processes

As the last block of  the dynamic real-time data capture system, for this application, 
the use of  the terminal was proposed as a method of  program completion. Both 
threads were kept running until the Ctrl + C/Z command was entered in the 
Python Terminal while the script was running. 

A process terminates when it completes the execution of  its final statement 
and requests the operating system to terminate it via the exit( ) system call. At this 
point, the process can return a status value, typically an integer, to its parent 
process awaiting it (via the wait( ) system call). All process resources, including 
physical and virtual memory, open files, and I/O buffers, are deallocated, and 
reclaimed by the operating system [21].

In section 3, we present what was obtained during the execution of  the 
proposed methodology for a cell phone light source, since being a low-quality 
signal, it allowed the design of  a robust methodology. The quality metrics utilized 
to assess the feasibility of  the signal processing stage are presented in section 
2.19 below.

2.19.  Validation

It is necessary to verify that the signal adjustment and filtering process does not 
diminish the quality of  the captured information. Therefore, it is proposed to use 
three metrics to evaluate the processing block: the signal-to-noise ratio (SNR), the 
root mean square error (RMSE), the coefficient of  determination (R-squared) 
and two indicators based on the amplitude of  the signals (DA) and the Shannon 
entropy (DE) [39-41]. According to [42, 43], higher SNR values generate more 
efficient results, and the lower the RMSE, the more desirable the result. Likewise, it 
is desired that R-square be as close to 1 as possible; see equation (3).

SNR(dB) = 10· log (                  ), ,,,...---   ,  (3)

RMSE = √ 1
N  ∑

N–1

i = 0
 (ya[i] – ŷ[i])2  ,

∑ (ya[ i])
2

∑ (ya[i] – ŷ[i])2

N–1

N–1

i = 0

i = 0
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Rsquare= 1 –  
∑ (ya[i] – ya)

2

∑ (ya[i] – ŷ[i])2

N–1
—

N–1

i = 0

i = 0   .

Where ya[i] is the i-th value of  the adjusted spectrum; the adjusted signal was 
taken to prevent the offset level from modifying the result of  the metrics. The 
signal ŷ[i] is the i-th data of  the filtered signal. Finally, N is the length of  the 
signals, in this work for the version of  the spectrometer used, it was 3520 data. 
Since the low-pass filter tends to attenuate the signal at points higher than the 
cut-off  point, in this work set at 0.1. A metric was proposed that indicates the 
variation of  the amplitudes of  the original and the filtered signal. This is especially 
useful in scenarios where the value associated with local maxima must be faithfully 
identified. The mathematical relationship is expressed in equation (4).

            DA = 
|Δy – Δŷ|

Δy  ⋅ 100%.  (4)

Where Δy = ymax  – ymin, knowing that  is the sample captured by the spectrometer. 
Similarly, Δŷ = ŷmax  – ŷmin represents the maximum amplitude of  the filtered signal. 
This metric helped to quantify the attenuation effect due to filter action.

Finally, a coefficient indicating the difference between the information 
preserved in the filtered signal by Shannon entropy was used. Equation (5) shows 
the relationship.

            DE = 
|Hy – Hŷ|

Hy  ⋅ 100%.  (5)

Where  is the entropy calculated for the original signal y, Hŷ is the entropy for 
the filtered signal ŷ. The scipy.stats.entropy function from the SciPy library was used 
for this metric [38]. Section 3 presents the results obtained during the execution 
of  the proposed methodology.

3.  Results and discussion

The programming and execution of  this methodology was performed using the 
Visual Studio Code editor version 1.88 and using Python 3.9.6. The computer 
used was a DELL laptop with 8 Gb of  RAM and AMD Ryzen 5 2500U processor 
with Windows 10. The following are the spectra captured from a cell phone LED 
light, as well as those obtained when processing the virtual data provided by the 
SeaBreeze library.
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3.1.  Hardware

Ten shots were taken every 500 ms (TS), from an LED light source with an 
integration time TI set at 10 ms. The number of  samples to be considered for 
averaging NS was 5. Figure 5 shows all the captured spectra.

3.2.   Acquisition and processing

The total acquisition time was 4.5 seconds. In Figure 5, in each sample, there 
was a variation in the distance between the detector and the light source. For this 
reason, a variation in the amplitude of  the captured signals is observed.

F igure 5. LED light spectra of  10 readings taken every 500ms. The wavelengths associated with 
the two peaks are approximately 450 nm and 565 nm, corresponding to the blue and green 

color range, respectively.

It is observed that wavelengths corresponding to violet and ultraviolet are not 
present. Likewise, infrared light is not captured as a component of  this light source. 
The samples that capture the most information are at times t = [2000, 4000, 4500] ms. 
Thus, the rest of  the signals are mainly noise; this was caused by the movement of  
the light source and to corroborate the real-time change of  the spectrum. The 
following is a series of  comparisons between some samples of  these signals and 
their respective processing.
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Figure 6 shows the different acquired signals and what was obtained after 
processing, i.e., offset adjustment and a low-pass filter. In the samples, the signals 
that did not capture the LED light spectrum, Figure 6a, 6c, 6e and 6g possess 
an average level of  approximately 1330 [Counts], while the amplitudes of  the 
samples at t = [2000, 4000, 4500] ms are 3174.76, 7656.53 and 4670.18 [Counts], 
respectively. This implies that there is a difference in amplitude of  up to 5 times 
between the noise signals and the maximum recorded intensity. Being mainly 
noise signals, the adjustment and filtering performed do not reveal new relevant 
information; this can be seen in Figures 6a, 6b, 6d, 6f  and 6h.

In the case of  Figures 6k, 6m and 6o, which correspond to the moments 
when the light source had the greatest distance from the detector, the filter 
accentuated the waveform and allowed us to observe that both peaks are around 
the same wavelengths of  Figure 5. Therefore, using the proposed processing it was 
possible to identify more accurately the presence of  blue tones (Figure 6n and 6p), 
a situation that is more complex to identify in the unprocessed signals due to 
the noise present and its amplitude levels. Finally, the offset adjustment and the 
second-order flat response zero offset filter attenuated the noise while preserving 
the amplitude and coincidence characteristics with the original wavelengths. The 
above can be seen in the pairs of  Figure 6i, 6j, 6q, 6r and 6s, 6t.

To analyze the filter efficiency, 5 metrics were implemented: the SNR signal 
to noise ratio, the RMSE value, the R-square coefficient, the DA Amplitude 
difference and the DE Shannon entropy difference. Section 3.3 presents the 
value of  these metrics for each of  the samples.

3.3.  Analysis of  adjustment and processing

To validate that the filter preserves as much useful information as possible, the 5 
metrics proposed in section 2.19 were calculated for each filtered signal. Table 13 
shows the values according to the time at which they were acquired.

The SNR, RMSE and R-Square values of  the signals captured at times t = [2000, 
4000, 4500] ms turned out to be the highest of  all samples. For DA metrics low 
values represent little discrepancy in amplitudes, while for DE, high values indicate 
that the filtered signal information is more representative compared to the original 
spectrum. Therefore, the application of  the filter at the 0.1 cut-off  point was effective 
in preserving the waveform of  the signals categorized as Light type and maintaining 
a difference in the original amplitude of  up to 4.9 %. Likewise, these signals had an 
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Fi gure 6. The first column displays the unadjusted spectra. In the second column are the fitted 
signals filtered by the 2nd order zero offset filter.
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SNR of  up to 38.54 %, a maximum RMSE value of  27.83 % and a maximum 
determination coefficient of  0.9998, resulting in a correct performance of  the 
proposed processing block.

For the signals t = [2500, 3000, 3500] ms which were captured with a greater 
distance between the light source and the detector, the result of  applying the 
offset adjustment and filtering, were signals with a coefficient of  determination 
of  up to 0.68. That is, the filtered signal managed to maintain 68 % of  the 
information of  interest present in the original signal. Likewise, in the spectrum  
t = 3000 ms the change in entropy was up to 0.71; this magnitude is low because 
the filter eliminated the noise components, but due to the low SNR ratio (12.99 dB), 
the resulting signal still maintains information that is not of  interest.

Finally, it is possible to observe that, in all the signals without the presence 
of  the light source of  interest, the difference in amplitudes is greater than 
83.37 %. This is because of  attenuating the noise components that are higher 
than the cut-off  point in the Fourier domain. It can also be seen that these 
signals have the lowest SNR of  the group of  samples.

Time [ms] SNR RMSE R - Squared DA (%) DE (%) Type

0 10.9253 15.7542 0.0547 88.6760 0.0190 Noise

500 11.9471 15.7301 0.0458 89.4279 0.0114 Noise

1000 10.6042 15.7757 0.0467 83.3754 0.0184 Noise

1500 12.4802 15.8233 0.0509 85.3460 0.0113 Noise

2000 31.6326 18.209 0.9989 4.9052 8.1775 Light

2500 11.8748 15.8183 0.2609 70.1125 0.1395 Noise

3000 12.9992 15.8471 0.6887 44.7016 0.7118 Noise

3500 12.7887 15.7033 0.3956 69.0415 0.2112 Noise

4000 38.5495 27.8310 0.9998 1.8674 9.0734 Light

4500 35.4580 20.8991 0.9996 3.1997 9.4096 Light

Table 13. Validation metrics applied to the LED light test spectra (TI = 10 ms).
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To visualize the effect of  the processing block on all the resulting signals, the 
comparative bar chart in Figure 7 was made. Each bar was normalized according 
to the maximum values of  each metric in Table 13.

3.4.  Dynamic real-time data capture system analysis

During the acquisition tests, the double thread functionality was used to attend 
requests for changes in the system hyperparameters. Likewise, tests were performed 
with different sampling times TS to demonstrate the accuracy of  the system. 1000 
readings were taken for each desired TS sampling time, and the actual time spent 
during the TS program run was averaged. The results are shown in Table 14. 

All measurements were performed using a constant value of  TI = 10 ms, an 
average of  NS = 5 and a selection of  the full range of  wavelengths available in the 
spectrometer: wvL = [191.09, 881.41] nanometers.

TI  (ms) TS (ms) Error (%)
5000 5001.0 0.0193
1000 1004.1 0.4134
500 511.0 2.1975
200 230.2 15.0936
100 129.1 29.0974
50 120.9 141.7637

Table 14. System accuracy with respect to sampling time.

According to the recorded data, the system has an accuracy of  up to 99.98 % 
when the sampling time is equal to 5 seconds. As TS decreased, the actual average 
reading time stabilized at approximately 120 ms. This time is the time used to 
execute the Processing block, the Display block and the Save action, in addition 
to the time it takes for the system to fully transmit the spectrum to the computer. 
According to the tests performed, the greatest number of  resources is occupied 
by the interactive graphic, which is updated every time there is a new reading, 
averaging 105.02 ms.

Thus, it is possible to establish that the designed software allows manipulating 
parameters during the acquisition stage and without stopping it, allowing the 
system to be implemented in experiments involving different sampling times. 
Because the system is dynamic and real-time, it can be used in a wide variety of  

–––

–––
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applications in the field of  optical biosensors. Since many biological processes 
take minutes to hours, it is possible to analyze changes using spectrophotometric 
techniques [44-47]. For example, in [48] it is indicated that they used 3 hours to 
analyze changes in the refractive indices of  cells sitting on a plasmo-mechanical 
sensor integrated with microfluidics; during this process, readings were taken 
every 30 minutes. Likewise, in [49], they state that most detection studies of  
SARS-COV2 and other viruses take between 10 minutes to 3 hours.

Therefore, the designed system is capable of  being potentially useful during 
the detection process of  metabolites or pathogens present in biological tissue, 
food, and beverages and even in studies of  environmental pollutants, since it 
allows establishing sampling times of  the spectra with high precision for values 
greater than 500 ms; considering the use of  TI in 10 ms.

The system responded to requests to update the hyperparameters at any 
instant and was able to display the changes related to the graph (wvL and TI ), 
in addition to saving the data in a CSV file in different sheets, according to the 
TI and TS . It is necessary to mention that, so far, the adjustment of  these times 
was totally manual. This implies that the TI required by the experiment had to 
be considered to establish an optimal TS sampling time. It is proposed to use 

F igure 7. Comparative plot by metric of  the 10 LED light test samples. The bars with seaweed 
green shades are mostly distinguishable from the set of  readings. Signals with noise do not 
show a large variation in bar height (colors with sea-blue shades). Finally, signals at times 

t = [2500, 3000, 3500] ms have bars with values that can be considered intermediate because 
they still have information about the distribution of  LED light intensities.
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prediction techniques based on neural networks that find the relationship between 
both times as a function TS = f  (TI ). This in order that the sampling time does not 
interfere with the reading process of  the experiment and affect its performance. 
In addition, for new versions of  the system, it is possible to contribute to the 
decrease of  the latency time of  the processing block by making a third thread 
dedicated to writing the data in the CSV file and extending the possibility of  
using sampling times lower than 500 ms (considering the integration time, as 
previously mentioned).

Finally, the system was able to perform the readings in real-time and allowed 
to save the spectra of  interest every nTS seconds, with n∈N. This has practical 
effects when observing the behavior of  the phenomenon and not saving the 
information until a multiple of  TS time. This helps to reduce the complexity of  
the subsequent analysis processes required.

This system has the potential to be introduced, for the most part, inside 
a microcontroller. Opening the possibility of  generating a portable system 
dedicated to the acquisition and cleaning of  spectra. Moreover, in the era of  
Industry 4.0, it is possible to integrate IoT technology, cloud computing and 
analytics, AI, and machine learning techniques to the proposed system to analyze 
and process the information and finally contribute to detection in less time and 
with higher accuracy, depending on the field of  application [50].

4.  Conclusions

The presented software achieves a sampling time accuracy exceeding 99 %, and 
its multithreaded processing capability allows for the dynamic management of  
hyperparameters in response to user requests, resulting in reduced overall latency 
times. The captured spectra could be displayed on-screen in real-time, with 
properties of  the coordinate axis boundaries automatically adjusted based on the 
amplitudes of  the recorded signal or the selection of  wavelengths of  interest. 

The use of  second-order filters with flat response and zero-phase are effective 
for attenuating noise present in spectral signals, even when the R-Square value is 
approximately 60 %. Additionally, the system maintained a difference in maximum 
amplitudes of  less than 5 %; however, filter efficiency tends to increase when the 
SNR of  the original signal itself  is higher from the beginning. 
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As an additional feature, it was found that it is possible to store the light 
spectrum data at a rate different from that stipulated by TS . Thereby, it is possible 
to store  spectra at each update interval of  the TS  plot. In practice, this feature 
is intended to support the visualization of  the dynamics of  the studied system 
while controlling the size of  the generated file.

Thus, a Python-based system developed for real-time acquisition and 
processing of  light spectra offers a versatile and efficient solution for a wide 
variety of  applications, with notable potential in sensors. By enabling the real-
time detection and analysis of  electromagnetic spectra, particularly in optical 
biosensors, the system contributes significantly to measuring optical properties 
such as transmittance, reflectance, or absorbance. This capability extends to 
calculating sensograms during biofunctionalization experiments, enhancing 
research possibilities. 

Finally, the system’s adaptability allows for seamless integration into different 
hardware setups, reducing technological dependencies on other software 
solutions. This aspect is particularly advantageous as it eliminates the need 
for costly licenses or additional software packages associated with commercial 
options like Ocean Optics spectrometers or MATLAB. Leveraging Python’s 
open-source nature and libraries like Python-SeaBreeze, developers can create 
tailored solutions without constraints imposed by proprietary software, thereby 
fostering innovation and exploration in spectroscopy research and analysis.
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