
Chapter 4 environmental area

DYNAMIC SYSTEM
DEVELOPMENT FOR REAL-TIME

LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR
APPLICATIONS IN PYTHON

Christian Isaac Hurtado-Esquivel1,
Erika Maricruz Gallardo Pinal1, Luis Alfonso Villa-Vargas2,
Miguel Ángel Alemán-Arce2, Verónica Iraís Solís-Tinoco2,3*,
Marco Antonio Ramírez-Salinas2

1 Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas
UPIITA-IPN. Ingeniería Biónica. Ciudad de México, C.P. 07340.

2 Centro de Investigación en Computación del Instituto Politécnico Nacional,
Laboratorio de Microtecnología y Sistemas Embebidos. Ciudad de México,
07738, México.

3 Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma
de México, Ciudad de México, 04510, México.

* irais.solis@cic.ipn.mx

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 72

Abstract

This work presents the development of a dynamic real-time light spectrum
acquisition software system utilizing Python, a high-level programming language,
focusing on optical biosensor applications. This software provides a versatile
tool for acquiring, processing, and visualizing white light spectra obtained by
connecting to an Ocean Optics spectrometer.

Dynamic term denotes the system’s ability to adjust acquisition parameters
in real-time, both in software and hardware, in response to user inputs. This
adaptability is achieved via thread-based concurrent programming, guaranteeing
precision sampling time (TS) of up to 99.98 %. By configuring a 500 ms period
and an integration time equivalent to 10 ms, offset levels are minimized and
noise in captured spectra is reduced: SNR reaches up to 38.54 dB, RMSE is
minimized to 27.83, and a maximum R-Squared of 0.9998 is attained. To
improve signal quality, a zero-phase second-order Butterworth filter is applied,
effectively suppressing noise above the normalized 0.04 rad/sample cut-off. Each
captured spectrum is presented by a graphical user interface, with optimized axis
boundaries, facilitating real-time analysis. Thus, this work provides an accessible
methodology for scientists and technicians to develop a real-time data acquisition
program, free from limitations and technological dependencies associated with
commercial devices.

Keywords: optical biosensors, python programming, data acquisition, threads,
spectrometer

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

73

1. Introduction

The implementation of sensors enables to comprehend, monitor, and regulate
the environment. Sensors convert physical phenomena into other physical
quantities, mainly electrical signals for qualification and quantification purposes.
Research advances have driven an interdisciplinary path to emerging biosensors
[1, 2]. The Union of Pure and Applied Chemistry (IUPAC) defines a biosensor
as a device that uses specific biochemical reactions to detect compounds usually
by electrical, thermal, or optical signals [3]. Biosensors are analytical devices
designed to interpret biological events mediated by two key components:
biological or biomimetic compounds and transducers. The initial stage of a
biosensor involves incorporating an element sensitive to an analyte, while the
transducer is responsible for detecting the interaction between the analyte and
the biorecognition component. When the biological recognition reaction occurs,
a series of physicochemical changes takes place, which are detected by the
transducer. The transducer transforms this stimulus into a quantifiable output
signal [4]. Some transducers recognize the reactions through optical properties
changes, facilitating direct, real-time, and label-free detection of biological and
chemical substances. Electrical components that contain these transducers are
classified as optical biosensors, constituting the central theme of discussion in
this work [5].

In the realm of optical biosensors, light is the energy source used to interact
with samples. When light falls on an analyte, a portion of it may be absorbed
by the sample’s constituents. Absorbance is a measure that quantifies the ability
of a medium to absorb incident light, while transmittance refers to the medium
capacity to transmit energy. Furthermore, some of the incident light may be
reflected off the surface of the sample, a phenomenon known as reflectance.
Reflectance measures the proportion of incident light that is redirected from
the sample’s surface. Optical sensors discern and quantify these changes in
absorbance, transmission, and reflectance to analyze samples for the presence
of certain components, such as biomolecules or specific chemical compounds
[4]. The high specificity of these sensors, their sensitivity, compactness and cost-
effectiveness enable applications spanning healthcare, environmental monitoring
and biotechnology [5].

A spectrum represents the amplitudes of a system’s wave components, and
light can be seen as this. The measurement of interactions between light and

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 74

matter, reactions and measurements of radiation intensity and wavelength, is
called spectrometry. Spectrometers are scientific-technical field instruments that
are used for the analysis of different forms of matter in the form of a signal [6].
Spectral data analysis is crucial for many fields, where accurate measurements are
fundamental. The demand for real-time signal analysis requires faster execution
of analytical operations to process all signal components within the designated
frequency spectrum. Therefore, it is imperative that signal display occurs
quickly and that all computational procedures persist uninterrupted, adapting to
variations in the input signal [7].

Ocean Optics spectrometers provide various data acquisition methods,
which have their own spectroscopic application. It is a software that has a
graphical interface that provides fast and stable data acquisition and processing
[8]. However, the license comes with a hefty price tag, making it unaffordable.
Moreover, it includes additional advanced features that enable users to engage
with the spectrometer data, incurring an additional expense. Then, this program
has limitations and technological dependencies associated with commercial
devices.

Another software that is capable of interfacing with these spectrometers is
MATLAB. This is a platform that provides the Instrument Control Toolbox,
which allows the connection with Ocean Optics spectrometers. A wide range
of tasks can be carried out in MATLAB, such as acquiring a spectrum, adjusting
integration time, applying dark current and non-linear spectral corrections, and
viewing all connected devices [9]. Despite being a powerful tool, it is important
to be aware of its drawbacks. One significant disadvantage is the high cost
associated with it. Moreover, licenses need to be renewed annually, which can be
quite expensive for businesses and organizations relying on MATLAB regularly.

Therefore, to overcome these challenges, it is essential to understand how to
develop software that allows efficient and seamless access to spectrometer data.
This would unlock new possibilities for researching and analyzing spectroscopic
data, eliminating the need to purchase costly licenses or additional software
packages.

On the other hand, Python is an open-source high-level programming
language which has become indispensable in science and technology. Cross-
platform portability, wide variety of packages and component integration are
the main characteristics that allow the user to do multiple tasks successfully. Its

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

75

versatility makes it popular in software development, due to the simplicity in
syntax and robustness in functionality [10].

Another feature of Python is the fact that it is an interpreted language. This
means that the Python interpreter alternately reads and performs the calculations
for each of the lines of code. It then repeats this process if there are no errors. This
allows to test language functionality while programming [11, 12]. Part of Python’s
technological development focuses on communication protocol implementation
for several purposes, taking advantage of libraries such as PySerial and PyUsb.
These protocols generate data exchange and communication between devices,
which guarantees efficient operation and joint operability between platforms.
Thus, Python represents aids for developers, who can create reliable and scalable
solutions for their communication needs across different domains.

In the field of spectrophotometry, Python emerges as a functional tool for
spectral analysis purposes, specifically, to interact with hardware devices like
spectrometers: Python-SeaBreeze. That is why it is important to understand
the underlying protocols in this context. Python-SeaBreeze plays a critical role,
bridging the gap between Python’s analytical capabilities and the complexities
of spectrometer communication. SeaBreeze library facilitates communication
with Ocean Optics spectrometers, offering two distinct backends: cseabreeze,
which wraps the SeaBreeze library, and pyseabreeze, which uses PyUsb for
communication [13]. Attributable to Python’s flexibility and scalability, it is
possible to develop software for the acquisition, processing, and visualization of
spectrometer data. Developers can focus more on problem-solving and less on the
complexities of programming languages, resulting in faster development cycles
and more efficient software delivery. Due to the versatility of the language and its
wide applications in science and engineering, libraries and built-in functions were
used to process signals, plot, and control sub-processes [14].

To execute Python programs or scripts, a code editor, or an integrated
development environment, called an IDE, is required [15]. Likewise, it is possible
to use a shell to write and run Python code. A shell is a command interpreter, which
means a program that translates commands entered by the user into instructions
for accessing operating system services [16]. It is possible to access the Python
Shell once the language has been installed. In this work, Windows PowerShell
served as the primary tool for executing a variety of installation processes due to
the operating system [17].

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 76

In addition, although Python can establish parallel processing, its application
is limited depending on the computer architecture [18]. When a processor has
only one core, it is not possible to perform multiple tasks simultaneously. On the
other hand, for multi-core processors, it is possible to create several processes
running in separate memory spaces and avoiding deadlocks; a concept known as
parallel programming [19, 20]. A process represents a running program which
requires resources allocated during its execution. Each process operates within
its own memory space and execution context. The operating system manages the
processes, enabling them to run simultaneously [14, 21]. This limitation poses
problems in efficiently utilizing multiple processors or cores, particularly in
scenarios where computational tasks need to be executed concurrently.

For this reason, to enhance compatibility with single-core processors, a multi-
threaded task execution flow, referred to as threads, was introduced. One or
more threads can be executed within a single process and Python provides a few
modules to create and manipulate these threads. However, due to the Global
Interpreter Lock (GIL) in CPython (the standard implementation of Python),
only one thread can execute Python code at a time. This means that even if
threads are used, only one thread can be running at any given time [22, 23].

However, developing spectral acquisition software using Python presents
notable challenges. First, the spectrometer’s quality directly affects the precision
and reliability of the obtained data. Additionally, successful integration requires
handling each device’s specific communication protocols, which can be complex
due to the variety of interfaces and standards used by manufacturers. Another
consideration is the libraries and requirements necessary to interact with the
spectrometer hardware. This involves installing and setting up additional
dependencies, which can complicate the development process.

In this work, we present a step-by-step methodology for developing a Python
program to facilitate the real-time acquisition and control of spectra from sources
such as halogen light sources, standard flashlights, and LED light sources. The
spectrometer utilized is the Ocean Optics Flame-T model, which is widely employed
for acquiring and measuring electromagnetic spectra from optical sensors.

First, the acquisition system is explained. It starts by presenting the general model
of the designed software and continues with the creation of the environment that
allows access to the SeaBreeze library functions. This is a process that only needs
to be performed once. Subsequently, the multithreaded processing is discussed

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

77

to make the system modifiable in its acquisition parameters and asynchronously.
Likewise, it is detailed how the recognition is performed with the device, the
reading of the spectra, and the adjustment to the signals to increase their quality by
attenuating the noise present. To conclude the section, the strategy for displaying
the spectra on the screen and storing them in the computer is mentioned. Finally,
the spectra obtained are presented and analyzed. In this work, a LED light source
was used, and 10 spectra captured every 5 seconds were analyzed.

This Python program could be used for real-time detection of electromagnetic
spectra generated by optical biosensors. The acquisition of spectrometer data
can be applied in measuring optical properties such as transmittance, reflectance,
or absorbance. Furthermore, acquiring data from the spectrometer in real-time
enables the calculation of sensorgrams generated during biofunctionalization
experiments of biosensors, which may last for minutes or even hours. This
Python program can be used for detecting changes in optical properties with the
help of specific optical biosensors, depending on the type of study.

2. Methodology

This section elaborates on the design of the acquisition system. A representation
of the connections used is depicted in Figure 1. Initially, an LED light source was
positioned in proximity to the spectrometer detector (Figure 1A). Additionally, a
Flame T spectrometer was employed (Figure 1B), connected to the computer via
the USB communication protocol (Figure 1C). The dynamic real-time spectrum
acquisition system was developed using the Python programming language.
In this acquisition process, the utilization of a shell was imperative to establish
communication with the software. It enabled user data input and provided
information display regarding the various ongoing processes, as illustrated in
Figure 1D. Ultimately, throughout the acquisition process, a printout of each
spectrum was generated (Figure 1E).

For the development of this system, we utilized Python version 3.9.6 along
with numerical data manipulation and visualization libraries such as NumPy
and Matplotlib. Additionally, we incorporate the spectrum acquisition package
SeaBreeze, as well as modules for time monitoring (time), thread management
(threading), and interaction with the operating system to control program inputs
and outputs (sys). The general block diagram of the proposed system is shown in
Figure 2 and it is described in the following sections.

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 78

2.1. SeaBreeze Execution Environment Set Up

The SeaBreeze library facilitates communication between the spectrometer and
the computer. Before using SeaBreeze functions, it is necessary to complete an
installation process for dependencies and libraries. This configuration is a one-
time process, establishing an environment capable of transmitting data, reading
hardware parameters, and facilitating the development of new functions. Figure
3 illustrates the proposed sequence, with each sub-process detailed below.

F igure 1. Components of the proposed spectrum acquisition system: (A) representation of the
LED light source, (B) example of Ocean Optics spectrometer, (C) computer compatible with
the requirements of the proposed system detailed in section 2.2, (D) example of the history

produced when running the system through a terminal, (E) example of wavelength distribution
associated with the light source used; spectrum saved at instant 4.5 s after starting the run.

Fi gure 2. Block diagram illustrating the implementation and configuration of a dynamic real-
time spectrum acquisition system.

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

79

Fig ure 3. Flowchart outlining the proper configuration of the environment required
for utilizing the SeaBreeze library.

2.2. Req uirements Verifi cation

The initial requirements for establishing communication with the measurement
hardware are summarized in Table 1.

Software Version More information
Windows +8 -
Windows PowerShell +3 PowerShell Installation
.NET Framework +4.8 .NET Framework Download
Microsoft Visual C++ +4.8 Microsoft Visual Studio Download

Tab le 1. Software versions. Information revised in 2024.

To begin the installation process on Windows, a minimum of Windows 8
or Windows Server 2012 version is required. Operating systems are generated
through PowerShell, enabling subsequent installations. The version of PowerShell
must be reviewed, which, according to current technologies, should be equal to
or greater than 3.

 Windows PowerShell

PS C:\Windows\system32> $PSVersionTable.PSVersion

Major Minor Build Revision
----- ----- ----- --------
5 1 19041 4170

In this example, based on the Major and Minor attributes, the Windows
PowerShell version is 5.1. Configuring the execution policy is necessary. This
adjustment allows the execution of scripts, which are essentially programming

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 80

code designed to automate certain processes, but only those scripts signed by a
trusted publisher [24, 25].

The first step is to run PowerShell as an administrator and grant permissions
to access as a superuser. Next, the security level is verified by executing the
following line:

Windows PowerShell

PS C:\Windows\system32> Get-ExecutionPolicy

If the result in the terminal is Restricted, the level must be changed to Allsigned.
The command to set up the execution policy is as follows:

Windows PowerShell

PS C:\Windows\system32> Set-ExecutionPolicy AllSigned

On non-Windows computers running PowerShell 6.0, the default execution
policy is Unrestricted and cannot be changed [26]. The following prerequisite is
.NET Framework version 4.8 or higher. This framework facilitates the creation and
running of various applications, including desktop apps, web services, and more [27,
28]. Finally, Microsoft Visual C++ compilation tools are necessary with a version
greater than or equal to 4.8. These tools are essential for compiling and debugging
C++ code, which is particularly valuable for low-level device communication and
hardware control. The SeaBreeze library primarily operates via C/C++, even though
the interface is in Python, making these tools crucial for its functionality [29, 30].

2.3. Package Manager Installation

Once the requirements have been fulfilled, the Chocolatey package manager was
chosen to facilitate the installation process of the SeaBreeze library, following
[13, 31] recommendation. The following batch of commands is executed in
Windows PowerShell.

Windows PowerShell
PS C:\Windows\system32> Set-ExecutionPolicy Bypass -Scope Process -Force;

PS C:\Windows\system32> [System.Net.ServicePointManager]::SecurityProtocol =
[System.Net.ServicePointManager]::SecurityProtocol -bor 3072;

PS C:\Windows\system32> iex ((New-Object System.Net.WebClient).
DownloadString(‘https://chocolatey.org/install.ps1’));

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

81

Note: using semicolon (;) at the end of each command is a method used to
distinguish the beginning and end of long instructions. To verify the correct
package manager installation, the next command is used:

Windows PowerShell

PS C:\Windows\system32> choco

Chocolatey v2.2.2

This example displays Chocolatey version 2.2.2 installed.

2.4. Spectrometer Interface Installation

After installing Chocolatey, basic operation requirements are obtained by executing
the following code in the terminal.

Windows PowerShell

PS C:\Windows\system32> choco install visualcpp-build-tools

PS C:\Windows\system32> choco install windows-sdk-10.1

PS C:\Windows\system32> choco install windowsdriverkit10

These three packages are essential for compiling and executing SeaBreeze
code, facilitating hardware manipulation using Python commands executed in
C++. They collectively streamline the compilation and execution processes.
Table 2 provides further details on these commands.

Commands Actions

choco install visualcpp-build-
tools Installs Microsoft Visual C++ compilation tools.

choco install windows-
sdk-10.1

Installs Windows 10.1 Software Development Kit
(SDK) for building applications.

choco install
windowsdriverkit10

Installs Windows 10 Driver Development Kit
(WDK), which includes building and deploying
driver tools (programs that support hardware-
operating system interaction), [13].

Table 2. Requirements installation using Chocolatey.

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 82

The subsequent task is SeaBreeze library installation using the commands below:

Windows PowerShell
PS C:\Windows\system32> git clone https://github.com/ap--/

python-seabreeze.git python-seabreeze;

PS C:\Windows\system32> cd python-seabreeze;
And then,
PS C:\Windows\system32> python -m pip install .;
Or

PS C:\Windows\system32> python -m pip install --no-binary :all:
seabreeze;

Each line of code is described below, including the actions it performs.

♦	 Copy a directory: The command git clone https://github.com/ap--/python-
seabreeze.git python-seabreeze, makes a copy of the GitHub repository
(according to the specified path) into a new directory on the computer
named “python-seabreeze”.

♦	 Change directory: The cd python-seabreeze command indicates that you are
moving to another path, in this case, to the “python-seabreeze” directory,
which is the one you just cloned. The cd (change directory) statement is
who performs the directory change action [32].

♦	 Installation: The instruction [python -m pip install .] installs the SeaBreeze
library in the current directory, which is specified with the dot (.).

♦	 Second way of installation: If the binary versions are not available,
it is possible to install using python -m pip install --no-binary :all: seabreeze.
This installation is done from source code instead of using precompiled
versions, also called binary.

Finally, it was necessary to install the drivers responsible for establishing
correct communication with the hardware. This was achieved by executing the
following command.

Windows PowerShell

PS C:\Windows\system32> seabreeze_os_setup

After pressing the Enter key, a confirmation menu appeared on the screen.
To proceed with the installation, the affirmative option was selected, initiating
the installation process. Once the previous operation has been completed, it

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

83

is possible to establish the correct connection between the spectrometer and
the computer [13]. To verify all previous installations, it is suggested to use the
commands described in section 2.5.

2.5. Verification of the environment

As the last step in setting up the environment, it was necessary to follow the
following commands, which check that the installation processes were executed
without errors.

2.6. Open Windows PowerShell and activate the Python environment

To activate the Python virtual environment, the command “py” was entered into
the shell, followed by pressing the Enter key:

Windows PowerShell

PS C:\Users\USERNAME> py

Python 3.9.6 (tags/v3.9.6:db3ff76, Jun 28 2021, 15:26:21)
[MSC v.1929 64 bit (AMD64)] on win32
Type “help”, “copyright”, “credits” or “license” for more
information.
>>>

This results in displaying the current version of Python being used. Now, Windows
PowerShell can be used as the language interpreter, recognizing all the language’s
commands. It is important to note that the “>>>” symbols now appear, indicating a
change in shell behavior. With this change, the Python interpreter has been initiated,
enabling the writing and execution of Python code in real-time, establishing a text
input and output environment. This is referred to as the Terminal [33].

2.7. Import SeaBreeze libraries

These instructions are necessary to establish the connection to the spectrometer.

Python

>>> import seabreeze
>>> seabreeze.use(‘cseabreeze’)
>>> import seatease.cseatease as emu_Spectrometer

After successful import, it is recommended to connect the device to the
computer and execute the following command block.

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 84

2.8. Connection verification

With these sentences, it was possible to verify the connection to the spectrometer.
The result on the screen depends on the model of the device you are working with.

Python
>>> spec = Spectrometer.from_first_available()
>>> print(spec)
<Spectrometer USB4000:USB4H10178>

In case the physical device is not available, it is still possible to perform the
verification by means of a spectrometer simulation. The instructions for this were:

Python

>>> emu_spec = emu_Spectrometer.SeaTeaseAPI().list_devices()[0]
>>> print(emu_spec)
<SeaTeaseDevice: 1>
>>> type(emu_spec)
<class ‘seatease.cseatease.SeaTeaseDevice’>

The print() instruction is used to display the list of available compatible devices
on the screen. In the case of the simulation, it only returned <SeaTeaseDevice: 1>.
Finally, the type() instruction displays the type of variable being introduced. In this
case, it corresponds to an object of class ‘seatease.cseatease.SeaTeaseDevice’, which is
correct and indicates that the virtual device recognition process is correct. The
spectrometer model utilized in this work was the Ocean Optics Flame-T model. Table
3 displays some parameters of this device.

Specification FLAME-T
Integration Time 3.8 ms to 10 seconds

Dynamic Range of system1 3.4 x 106

Scan rate (max)2 260 Hz

Table 3. Optical and spectroscopic specifications.

1. Dynamic range of the system is the range of the detectable light level and can be thought of
as the maximum detectable light level at the minimum integration time divided by the minimum
detectable light level at the maximum integration time.
2. Scan rate is dependent on the operating computer and not the spectrometer. These figures
assume a non-real-time operating system [51].

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

85

Before concluding the section, the code statements used in the processes
described above are presented in Table 4, along with their representation in
pseudocode form, which is used throughout this work. The process of installing
the required libraries, packages, and software was performed only once on the
computer. Once the device recognition test was successful, we proceeded to
design the acquisition system, which is detailed in sections 2.9 and 2.10.

Code Pseudocode Action

Spectrometer.

from_first_available()
spec ← Spectrometer_
connection()

Connection to
the first available
spectrometer.

emu_Spectrometer.

SeaTeaseAPI().list_

devices()[0]

emu_Spec ← emu_
Spectrometer_connection()

Spectrometer
simulation.

spec._wavelengths
range_wv ← spec_
wavelengths

Reads the accepted
wavelength range.

spec.integration_time_
micros_limits

range_ti ← spec_
integration_time_micros_
limits

Reads the accepted
integration time
interval (us).

Table 4. Pseudocode representation of the functions to connect to the spectrometer.

2.9. Device Recognition

According to Figure 2, the proposed acquisition system begins with the recognition
of the spectrometer. To initiate the readings, it was necessary to create a PY
file and import the corresponding libraries into the environment. The following
libraries were imported: the SeaBreeze library, facilitating the connection with the
spectrometer; NumPy, for manipulating measurements as matrix data; Matplotlib
for graph visualization; and time for controlling the flow of time in data sampling.
Additionally, threading and signal were utilized to create and manage actions in two
processing threads: one dedicated to data capture (Main Thread) and the second
to review and update parameters modifying the hardware acquisition behavior
according to user requirements. Finally, sys was used to successfully complete the
script execution.

Subsequently, a connection request loop was executed. This involves attempting
to connect to the spectrometer, and if any issues arise, the system continues

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 86

attempting to connect. If a certain number of attempts are exceeded, it indicates
an unsuccessful connection and prompts the user to either continue in simulation
mode or terminate the program. This functionality can be beneficial, particularly
when the device is not owned, and the user wishes to learn how to manipulate
spectrogram data available with the SeaBreeze library. Another scenario is when
the computer requires additional time to recognize the external device.

Upon a successful connection, the system creates an object of the Spectrometer
class, which is defined by the model and serial number of the hardware. In this
work, the model obtained was <Spectrometer USB4000:USB4H10178>. This
information is available in the attributes of the spec variable, specified in the
pseudocode of Table 4 and Table 5. With this entity, it became feasible to access
the captured data and configure spectrometer parameters for the reading, such
as: integration time TI , number of samples to be averaged N, and the desired
wavelength limits wvLmin

and wvLmax
 according to the desired analysis.

Details regarding these parameters and their modifications are presented in
section 2.13. The logic used is shown in Table 5 by means of pseudocode.

Following successful linkage with the spectrometer, a synchronous data
acquisition system was implemented. This system enables the acquisition of
spectral data according to a sampling time TS , determined by two factors: the
user’s choice and the integration time TI required during experimental tests. The
process is applicable for both available modes, namely using the Hardware or
Virtual mode. This system is explained in detail in section 2.10.

2.10. Dynamic Real-Time Data Capture System

This subsection elaborates on the strategies devised to initiate the real-time
reading process. This system possesses the characteristic of accommodating the
user’s external requests and adjusting the reading data accordingly. This is achieved
while the system acquires signals from the spectrometer, avoiding any undesired
pauses. Consequently, the system is termed dynamic. Figure 4 illustrates the block
diagram of this system.

To ensure that the system can manage external user requests, two processing
threads have been implemented. These threads enable achieving a concurrency
effect, allowing two different processes to run seemingly simultaneously. The
components comprising this system are described below.

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

87

Table 5. Pseudocode of the Device Recognition process.

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 88

2.11. I nitiates Processes

In this block, both threads or sub-processes are initialized: the Main thread
and the secondary thread. In the first thread, all the logic related to real-time
acquisition was established, and a reading request period of (TS) was set. Within
this interval, the functions related to signal acquisition and processing are
executed. It is important to note that this time represents the speed of spectrum
reading and should not be confused with the integration time (TI), which is a
parameter of the spectrometer.

To enhance the quality of recorded data, it is necessary to adjust the
configuration of the device’s hyperparameters. A methodology was implemented
to execute these changes, possibly in an aperiodic manner, as indicated by the
user. This process is carried out in the second thread and does not affect the
acquisition process of the main thread.

The hyperparameters mentioned above are:

♦	 Integration time TI .
♦	 Limits of the wavelengths of interest wvL.
♦	 Number of spectra to average NS to attenuate the present noise.
♦	 Instruction to consider the Background Spectrum (BS) to eliminate it.

This signal level is captured by the device when the sample to be analyzed
is absent [34].

F igure 4. Flowchart diagram of the spectrometer acquisition system.

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

89

Finally, the possibility of terminating the program at any time by using the Ctrl
+ C or Ctrl + Z instructions was established. The logic used is illustrated in Table
6 through pseudocode.

Table 6. Pseudocode of the initialization process.

Next, sections 2.12 and 2.17 detail the methodology employed in the main
processing thread as well as in the secondary thread.

2.12. Main Thread

This block corresponds to the process of acquisition, digital treatment, and
display of the captured signal. Four main actions were established sequentially:
(i) data reading, (ii) application of filtering and adjustment techniques, (iii) screen
display, and (iv) the option of storing the readings in the computer. Each task is
described in detail below.

2.13. Read Request

Every TS seconds, a new read request is made with the hyperparameters allowed
by the device. These were initialized in the Initiates processes block in section
2.11. In this work, the accepted hyperparameters corresponding to the device
model are presented in Table 7.

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 90

Hyperparameters Value

TI 3.8 ms to 10 seconds
wvL [191.0969 – 881.4172] nm
NS Natural number
BS True or False
TS [500 - 5000] ms

Table 7. Options for hyperparameter values employed in the proposed methodology.

The data reading was conducted using the SeaBreeze library, resulting in the
acquisition of the spectrum. It was feasible to identify the vector storing the
wavelengths present and the count vector. These data are contingent on the
nature of the light source, as well as the integration time TI configured. Table 8
presents the main statements used and their corresponding pseudocode.

Code Pseudocode Action

spec.integration_time_micros(TI)
set_integration_
time(TI) Sets the TI for

spectrum reading.

spec.wavelengths() x ← read_wv() Read vector
wavelengths.

spec.intensities() y ← read_int() Reads vector of
intensities.

spec.f.spectrometer.

set_integration_time_micros(Ts)
vset_integration_
time(TI) Sets the TI for

simulation.

spec.f.spectrometer.get_wavelengths()
x ← read_wv_
virtual()

Read vector
of virtual
wavelengths.

spec.f.spectrometer.get_intensities()
y ← read_int_
virtual() Read vector of

virtual intensities.

Table 8. Main instructions and their representation in pseudocode.

Finally, with the equivalences provided in Table 8, the logic employed in the
Read Request block is presented; refer to Table 9.

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

91

2.14. Signal Processing

This block was responsible for reducing the signal offset and attenuating the noise
present in the data. Since this work primarily focused on capturing absorbance
spectra, the signal to be processed indicates the behavior of the light captured
solely by the spectrometer. This spectrum can be primarily represented as a
composition of three signals: the real physical signal (yp(t)), the noise mainly
stemming from the effect of ambient illumination (yl(t)), and the noise caused
by electromagnetic effects added during the digital conversion processes, ye[n].
Therefore, the actual physical signal tends to be contaminated.

The above can be described by equation (1).

y(t) = yp(t) + yl(t), t≥0,

∴ y[n] = yp[n] + yl[n] + ye[n], n≥0.
(1)

Where y[n] corresponds to the contaminated digital signal, which can be
plotted on the computer. The digital signals yl[n] and ye[n] represent the ambient
and electronic noise, respectively. The objective of this processing block was
to decrease the effects of noise and ambient light (the latter causing an offset).
Therefore, it is possible to reduce the signal offset by subtracting the minimum
value present in the reading.

This is expressed in equation (2).

yadj = y – min{y} (2)

where yadj represents a correction of the signal for the offset effect caused by a base
noise signal (Background Spectrum). This adjustment aligns the values to estimate the
maximum readout count and determine its corresponding wavelength. However,
this process does not eliminate the noise present. Therefore, it was proposed
to use a low-pass discrete Fourier domain filter with a 2nd order Butterworth
response. The Butterworth response was chosen because this type of filter
maintains a linear phase in the passband [35]. Additionally, due to the nature of
the analyzed signal, it is necessary to preserve the correspondence between the
wavelengths and their counts. Therefore, the zero-phase Butterworth filter was
utilized. This type of filter has the advantage of avoiding a lag with respect to the
original signal. Additionally, the filtering process is performed twice: once in the
forward direction and the second in the reverse direction in the signal, enhancing

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 92

the noise attenuation effect [36]. This approach ensures that critical points in
absorbance spectra detection are not interfered with. Finally, the cut-off point at
which the filter began to attenuate the noise was chosen experimentally, set at 0.1.

Table 9. Pseudocode of the Read Request block.

In this work, the FFT algorithm was implemented using the fft.fft function of
the NumPy library for the choice of the cut-off point [37]. For the design and
application of the filter, signal.butter and signal.sosfiltfilt from SciPy were utilized
[38]. This filtered signal was displayed on the screen and stored in the computer
in a CSV format file. Table 10 below presents the pseudocode that explains the
previously detailed process.

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

93

Table 10. Pseudocode of the Signal Processing block.

2.15. Display

After signal processing, an interactive graph was created that updates with each
reading. This means that the display automatically adjusts the limits of the
coordinate axes according to the light input to the spectrometer to achieve correct
visualization. This function updates according to the time TS and accommodates
changes made by the user, particularly those from the secondary thread. In this
graph, the most important hyperparameters are the limits of the wavelengths to
be displayed, according to the desired experimental process.

Section 3.2 showcases the graphs obtained with the proposed methodology.
Likewise, the structure of the code used is presented in Table 11.

Table 11. Pseudocode of the
Display block.

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 94

2.16. Save Data

Finally, the recorded and processed samples are stored in a CSV format file. After
each save action, the acquisition loop restarts to initiate a new read request. As
previously mentioned, the hyperparameter update and verification process were
implemented in the secondary thread to avoid halting the acquisition loop and
to concentrate the functions on signal processing. Section 2.17 provides details
about this secondary thread.

2.17. Secondary Thread

This system was designed with the possibility of making changes in the
hyperparameters at any time, allowing the updating of the spectrum capture
process, as well as in the visualization of the graph. Due to the use of the input(
) function, the program constantly waits for a change. Once a correct input is
detected, the system updates the old hyperparameters used in the Read Request
and Display blocks. Subsequently, the system returns to waiting for a new input.
Each hyperparameter update is performed at the end of each reading and signal
processing, avoiding errors during the acquisition process. If two previous
consecutive inputs were the same, a workflow was designed to avoid unnecessary
updates. This process continues until the user finishes the program from the
terminal, having not only the secondary thread, but also the main thread.

Table 12. Pseudocode of the secondary thread.

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

95

2.18. Stop Processes

As the last block of the dynamic real-time data capture system, for this application,
the use of the terminal was proposed as a method of program completion. Both
threads were kept running until the Ctrl + C/Z command was entered in the
Python Terminal while the script was running.

A process terminates when it completes the execution of its final statement
and requests the operating system to terminate it via the exit() system call. At this
point, the process can return a status value, typically an integer, to its parent
process awaiting it (via the wait() system call). All process resources, including
physical and virtual memory, open files, and I/O buffers, are deallocated, and
reclaimed by the operating system [21].

In section 3, we present what was obtained during the execution of the
proposed methodology for a cell phone light source, since being a low-quality
signal, it allowed the design of a robust methodology. The quality metrics utilized
to assess the feasibility of the signal processing stage are presented in section
2.19 below.

2.19. Validation

It is necessary to verify that the signal adjustment and filtering process does not
diminish the quality of the captured information. Therefore, it is proposed to use
three metrics to evaluate the processing block: the signal-to-noise ratio (SNR), the
root mean square error (RMSE), the coefficient of determination (R-squared)
and two indicators based on the amplitude of the signals (DA) and the Shannon
entropy (DE) [39-41]. According to [42, 43], higher SNR values generate more
efficient results, and the lower the RMSE, the more desirable the result. Likewise, it
is desired that R-square be as close to 1 as possible; see equation (3).

SNR(dB) = 10· log (), ,,,...--- , (3)

RMSE = √ 1
N ∑

N–1

i = 0
 (ya[i] – ŷ[i])2 ,

∑ (ya[i])
2

∑ (ya[i] – ŷ[i])2

N–1

N–1

i = 0

i = 0

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 96

Rsquare= 1 –
∑ (ya[i] – ya)

2

∑ (ya[i] – ŷ[i])2

N–1
—

N–1

i = 0

i = 0 .

Where ya[i] is the i-th value of the adjusted spectrum; the adjusted signal was
taken to prevent the offset level from modifying the result of the metrics. The
signal ŷ[i] is the i-th data of the filtered signal. Finally, N is the length of the
signals, in this work for the version of the spectrometer used, it was 3520 data.
Since the low-pass filter tends to attenuate the signal at points higher than the
cut-off point, in this work set at 0.1. A metric was proposed that indicates the
variation of the amplitudes of the original and the filtered signal. This is especially
useful in scenarios where the value associated with local maxima must be faithfully
identified. The mathematical relationship is expressed in equation (4).

 DA =
|Δy – Δŷ|

Δy ⋅ 100%. (4)

Where Δy = ymax – ymin, knowing that is the sample captured by the spectrometer.
Similarly, Δŷ = ŷmax – ŷmin represents the maximum amplitude of the filtered signal.
This metric helped to quantify the attenuation effect due to filter action.

Finally, a coefficient indicating the difference between the information
preserved in the filtered signal by Shannon entropy was used. Equation (5) shows
the relationship.

 DE =
|Hy – Hŷ|

Hy ⋅ 100%. (5)

Where is the entropy calculated for the original signal y, Hŷ is the entropy for
the filtered signal ŷ. The scipy.stats.entropy function from the SciPy library was used
for this metric [38]. Section 3 presents the results obtained during the execution
of the proposed methodology.

3. Results and discussion

The programming and execution of this methodology was performed using the
Visual Studio Code editor version 1.88 and using Python 3.9.6. The computer
used was a DELL laptop with 8 Gb of RAM and AMD Ryzen 5 2500U processor
with Windows 10. The following are the spectra captured from a cell phone LED
light, as well as those obtained when processing the virtual data provided by the
SeaBreeze library.

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

97

3.1. Hardware

Ten shots were taken every 500 ms (TS), from an LED light source with an
integration time TI set at 10 ms. The number of samples to be considered for
averaging NS was 5. Figure 5 shows all the captured spectra.

3.2. Acquisition and processing

The total acquisition time was 4.5 seconds. In Figure 5, in each sample, there
was a variation in the distance between the detector and the light source. For this
reason, a variation in the amplitude of the captured signals is observed.

F igure 5. LED light spectra of 10 readings taken every 500ms. The wavelengths associated with
the two peaks are approximately 450 nm and 565 nm, corresponding to the blue and green

color range, respectively.

It is observed that wavelengths corresponding to violet and ultraviolet are not
present. Likewise, infrared light is not captured as a component of this light source.
The samples that capture the most information are at times t = [2000, 4000, 4500] ms.
Thus, the rest of the signals are mainly noise; this was caused by the movement of
the light source and to corroborate the real-time change of the spectrum. The
following is a series of comparisons between some samples of these signals and
their respective processing.

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 98

Figure 6 shows the different acquired signals and what was obtained after
processing, i.e., offset adjustment and a low-pass filter. In the samples, the signals
that did not capture the LED light spectrum, Figure 6a, 6c, 6e and 6g possess
an average level of approximately 1330 [Counts], while the amplitudes of the
samples at t = [2000, 4000, 4500] ms are 3174.76, 7656.53 and 4670.18 [Counts],
respectively. This implies that there is a difference in amplitude of up to 5 times
between the noise signals and the maximum recorded intensity. Being mainly
noise signals, the adjustment and filtering performed do not reveal new relevant
information; this can be seen in Figures 6a, 6b, 6d, 6f and 6h.

In the case of Figures 6k, 6m and 6o, which correspond to the moments
when the light source had the greatest distance from the detector, the filter
accentuated the waveform and allowed us to observe that both peaks are around
the same wavelengths of Figure 5. Therefore, using the proposed processing it was
possible to identify more accurately the presence of blue tones (Figure 6n and 6p),
a situation that is more complex to identify in the unprocessed signals due to
the noise present and its amplitude levels. Finally, the offset adjustment and the
second-order flat response zero offset filter attenuated the noise while preserving
the amplitude and coincidence characteristics with the original wavelengths. The
above can be seen in the pairs of Figure 6i, 6j, 6q, 6r and 6s, 6t.

To analyze the filter efficiency, 5 metrics were implemented: the SNR signal
to noise ratio, the RMSE value, the R-square coefficient, the DA Amplitude
difference and the DE Shannon entropy difference. Section 3.3 presents the
value of these metrics for each of the samples.

3.3. Analysis of adjustment and processing

To validate that the filter preserves as much useful information as possible, the 5
metrics proposed in section 2.19 were calculated for each filtered signal. Table 13
shows the values according to the time at which they were acquired.

The SNR, RMSE and R-Square values of the signals captured at times t = [2000,
4000, 4500] ms turned out to be the highest of all samples. For DA metrics low
values represent little discrepancy in amplitudes, while for DE, high values indicate
that the filtered signal information is more representative compared to the original
spectrum. Therefore, the application of the filter at the 0.1 cut-off point was effective
in preserving the waveform of the signals categorized as Light type and maintaining
a difference in the original amplitude of up to 4.9 %. Likewise, these signals had an

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

99

Fi gure 6. The first column displays the unadjusted spectra. In the second column are the fitted
signals filtered by the 2nd order zero offset filter.

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 100

SNR of up to 38.54 %, a maximum RMSE value of 27.83 % and a maximum
determination coefficient of 0.9998, resulting in a correct performance of the
proposed processing block.

For the signals t = [2500, 3000, 3500] ms which were captured with a greater
distance between the light source and the detector, the result of applying the
offset adjustment and filtering, were signals with a coefficient of determination
of up to 0.68. That is, the filtered signal managed to maintain 68 % of the
information of interest present in the original signal. Likewise, in the spectrum
t = 3000 ms the change in entropy was up to 0.71; this magnitude is low because
the filter eliminated the noise components, but due to the low SNR ratio (12.99 dB),
the resulting signal still maintains information that is not of interest.

Finally, it is possible to observe that, in all the signals without the presence
of the light source of interest, the difference in amplitudes is greater than
83.37 %. This is because of attenuating the noise components that are higher
than the cut-off point in the Fourier domain. It can also be seen that these
signals have the lowest SNR of the group of samples.

Time [ms] SNR RMSE R - Squared DA (%) DE (%) Type

0 10.9253 15.7542 0.0547 88.6760 0.0190 Noise

500 11.9471 15.7301 0.0458 89.4279 0.0114 Noise

1000 10.6042 15.7757 0.0467 83.3754 0.0184 Noise

1500 12.4802 15.8233 0.0509 85.3460 0.0113 Noise

2000 31.6326 18.209 0.9989 4.9052 8.1775 Light

2500 11.8748 15.8183 0.2609 70.1125 0.1395 Noise

3000 12.9992 15.8471 0.6887 44.7016 0.7118 Noise

3500 12.7887 15.7033 0.3956 69.0415 0.2112 Noise

4000 38.5495 27.8310 0.9998 1.8674 9.0734 Light

4500 35.4580 20.8991 0.9996 3.1997 9.4096 Light

Table 13. Validation metrics applied to the LED light test spectra (TI = 10 ms).

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

101

To visualize the effect of the processing block on all the resulting signals, the
comparative bar chart in Figure 7 was made. Each bar was normalized according
to the maximum values of each metric in Table 13.

3.4. Dynamic real-time data capture system analysis

During the acquisition tests, the double thread functionality was used to attend
requests for changes in the system hyperparameters. Likewise, tests were performed
with different sampling times TS to demonstrate the accuracy of the system. 1000
readings were taken for each desired TS sampling time, and the actual time spent
during the TS program run was averaged. The results are shown in Table 14.

All measurements were performed using a constant value of TI = 10 ms, an
average of NS = 5 and a selection of the full range of wavelengths available in the
spectrometer: wvL = [191.09, 881.41] nanometers.

TI (ms) TS (ms) Error (%)
5000 5001.0 0.0193
1000 1004.1 0.4134
500 511.0 2.1975
200 230.2 15.0936
100 129.1 29.0974
50 120.9 141.7637

Table 14. System accuracy with respect to sampling time.

According to the recorded data, the system has an accuracy of up to 99.98 %
when the sampling time is equal to 5 seconds. As TS decreased, the actual average
reading time stabilized at approximately 120 ms. This time is the time used to
execute the Processing block, the Display block and the Save action, in addition
to the time it takes for the system to fully transmit the spectrum to the computer.
According to the tests performed, the greatest number of resources is occupied
by the interactive graphic, which is updated every time there is a new reading,
averaging 105.02 ms.

Thus, it is possible to establish that the designed software allows manipulating
parameters during the acquisition stage and without stopping it, allowing the
system to be implemented in experiments involving different sampling times.
Because the system is dynamic and real-time, it can be used in a wide variety of

–––

–––

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 102

applications in the field of optical biosensors. Since many biological processes
take minutes to hours, it is possible to analyze changes using spectrophotometric
techniques [44-47]. For example, in [48] it is indicated that they used 3 hours to
analyze changes in the refractive indices of cells sitting on a plasmo-mechanical
sensor integrated with microfluidics; during this process, readings were taken
every 30 minutes. Likewise, in [49], they state that most detection studies of
SARS-COV2 and other viruses take between 10 minutes to 3 hours.

Therefore, the designed system is capable of being potentially useful during
the detection process of metabolites or pathogens present in biological tissue,
food, and beverages and even in studies of environmental pollutants, since it
allows establishing sampling times of the spectra with high precision for values
greater than 500 ms; considering the use of TI in 10 ms.

The system responded to requests to update the hyperparameters at any
instant and was able to display the changes related to the graph (wvL and TI),
in addition to saving the data in a CSV file in different sheets, according to the
TI and TS . It is necessary to mention that, so far, the adjustment of these times
was totally manual. This implies that the TI required by the experiment had to
be considered to establish an optimal TS sampling time. It is proposed to use

F igure 7. Comparative plot by metric of the 10 LED light test samples. The bars with seaweed
green shades are mostly distinguishable from the set of readings. Signals with noise do not
show a large variation in bar height (colors with sea-blue shades). Finally, signals at times

t = [2500, 3000, 3500] ms have bars with values that can be considered intermediate because
they still have information about the distribution of LED light intensities.

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

103

prediction techniques based on neural networks that find the relationship between
both times as a function TS = f (TI). This in order that the sampling time does not
interfere with the reading process of the experiment and affect its performance.
In addition, for new versions of the system, it is possible to contribute to the
decrease of the latency time of the processing block by making a third thread
dedicated to writing the data in the CSV file and extending the possibility of
using sampling times lower than 500 ms (considering the integration time, as
previously mentioned).

Finally, the system was able to perform the readings in real-time and allowed
to save the spectra of interest every nTS seconds, with n∈N. This has practical
effects when observing the behavior of the phenomenon and not saving the
information until a multiple of TS time. This helps to reduce the complexity of
the subsequent analysis processes required.

This system has the potential to be introduced, for the most part, inside
a microcontroller. Opening the possibility of generating a portable system
dedicated to the acquisition and cleaning of spectra. Moreover, in the era of
Industry 4.0, it is possible to integrate IoT technology, cloud computing and
analytics, AI, and machine learning techniques to the proposed system to analyze
and process the information and finally contribute to detection in less time and
with higher accuracy, depending on the field of application [50].

4. Conclusions

The presented software achieves a sampling time accuracy exceeding 99 %, and
its multithreaded processing capability allows for the dynamic management of
hyperparameters in response to user requests, resulting in reduced overall latency
times. The captured spectra could be displayed on-screen in real-time, with
properties of the coordinate axis boundaries automatically adjusted based on the
amplitudes of the recorded signal or the selection of wavelengths of interest.

The use of second-order filters with flat response and zero-phase are effective
for attenuating noise present in spectral signals, even when the R-Square value is
approximately 60 %. Additionally, the system maintained a difference in maximum
amplitudes of less than 5 %; however, filter efficiency tends to increase when the
SNR of the original signal itself is higher from the beginning.

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 104

As an additional feature, it was found that it is possible to store the light
spectrum data at a rate different from that stipulated by TS . Thereby, it is possible
to store spectra at each update interval of the TS plot. In practice, this feature
is intended to support the visualization of the dynamics of the studied system
while controlling the size of the generated file.

Thus, a Python-based system developed for real-time acquisition and
processing of light spectra offers a versatile and efficient solution for a wide
variety of applications, with notable potential in sensors. By enabling the real-
time detection and analysis of electromagnetic spectra, particularly in optical
biosensors, the system contributes significantly to measuring optical properties
such as transmittance, reflectance, or absorbance. This capability extends to
calculating sensograms during biofunctionalization experiments, enhancing
research possibilities.

Finally, the system’s adaptability allows for seamless integration into different
hardware setups, reducing technological dependencies on other software
solutions. This aspect is particularly advantageous as it eliminates the need
for costly licenses or additional software packages associated with commercial
options like Ocean Optics spectrometers or MATLAB. Leveraging Python’s
open-source nature and libraries like Python-SeaBreeze, developers can create
tailored solutions without constraints imposed by proprietary software, thereby
fostering innovation and exploration in spectroscopy research and analysis.

Acknowledgement

The authors would like to thank Instituto Politécnico Nacional for the use of
its facilities, BEIFI SIP20240477 and SIP20241266 projects, and CONAHCYT
for its support with postgraduate scholarships and for the project CONAHCYT
N°319037 “Escuela Mexicana de Ventilación”.

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

105

References

1. Togawa, T., Tamura, T., & Öberg, P. Å. (2011). Biomedical sensors and instruments (2nd ed.).
Taylor & Francis Group.
https://doi.org/10.1201/b10775

2. Khandpur, R. S. (2003). Handbook of biomedical instrumentation (2nd ed.). McGraw-Hill.

3. International Union of Pure and Applied Chemistry (IUPAC). (2014). Biosensor. In
IUPAC eBooks.

4. Gómez, D. R. (2012, February 23). Biosensores ópticos de alta sensibilidad basados en técnicas de
modulación plasmónica. [Online]. Available:
http://hdl.handle.net/10347/5134

5. Damborský, J. K., & Š., J. (2016). Optical biosensors. Essays in Biochemistry, 60, 91–100.
https://doi.org/10.1042/EBC20150010

6. Marín Silva, D. A. (2022). Funcionalización de matrices a base de polímeros biodegradables mediante
incorporación de nanopartículas. Universidad Nacional de La Plata.

7. Tektronix. (2023). Analysis, Fundamentals of Real-Time Spectrum. [Online]. Available:
https://www.tek.com/en/documents/primer/fundamentals-real-time-spectrum-analysis

8. Optics, O. (n.d.). USB Programmer: Installation and Operation Instructions. Florida.

9. Simulink, M. &. (n.d.). Ocean Optics Spectrometer support from Instrument Control toolbox. [Online].
Available: https://la.mathworks.com/hardware-support/ocean-optics-spectrometers.html

10. Lutz, M. (2010). Programming Python: Powerful object-oriented programming (4th ed.). O’Reilly
Media, Inc.

11. Python Documentation. (2024, April 6). Python frequently asked questions. [Online]. Available:
https://docs.python.org/es/3/faq/general.html

12. Datta, S. (2022, July 14). FreeCodeCamp.org. [Online]. Available:
https://www.freecodecamp.org/news/run-python-script-how-to-execute-python-
shell-commands-in-terminal/

13. Poehlmann, A. (2019). Python-Seabreeze documentation. [Online]. Available:
https://python-seabreeze.readthedocs.io/en/latest/

14. Nagar, S. (2017). Introduction to Python for engineers and scientists: Open source solutions for
numerical computation. Apress.
https://doi.org/10.1007/978-1-4842-3204-0_2

15. Halvorsen, H. P. (2020). Python for science and engineering.

16. Burn, I. (2022, November 8). CCM. [Online]. Available:
https://es.ccm.net/ordenadores/linux/3810-que-es-un-shell-y-para-que-se-utiliza/

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 106

17. Wheeler, S., & Buck, A. (2023, June 28). Microsoft Learn. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.4

18. Brownlee, J. (2023, November 22). Python Multiprocessing: The complete guide. Super Fast
Python. [Online]. Available:
https://superfastpython.com/multiprocessing-in-python/

19. Patrizio, A. (2022, September 23). Single-core vs. multi-core CPUs. [Online]. Available:
https://www.networkworld.com/article/971425/single-core-vs-multi-core-cpus.html

20. Ramanathan, R. M. (2015). Intel multi-core processors.

21. Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating system concepts (10th ed.).
WILEY.

22. Bala, P. C. (2022, December 8). Python Threading: An Introduction. [Online]. Available:
https://geekflare.com/python-threading/

23. Python Software Foundation. (2024, April 6). Threading - thread-based parallelism. [Online].
Available:
https://docs.python.org/3/library/threading.html

24. Coursera Staff. (2023, November 29). What are scripting languages? (And why should I learn
one?) Coursera. [Online]. Available:
https://www.coursera.org/articles/scripting-language

25. Wheeler, S. (2024, April 3). About execution Policies - PowerShell. Microsoft Learn. [Online].
Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/
about/about_execution_policies?view=powershell-7.4

26. Wheeler, S. (n.d.). Set-ExecutionPolicy (Microsoft.PowerShell.Security) - PowerShell. Microsoft
Learn. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.
security/set-executionpolicy?view=powershell-7.4. [Accessed April 1, 2024]

27. Microsoft. (n.d.). Download .NET Framework | Free official downloads. [Online]. Available:
https://dotnet.microsoft.com/en-us/download/dotnet-framework

28. Microsoft. (n.d.). Download .NET Framework 4.8 | Free official downloads. [Online]. Available:
https://dotnet.microsoft.com/en-us/download/dotnet-framework/net48

29. Saleh, M. (2024, February 24). Latest supported Visual C++ Redistributable downloads.
Microsoft Learn. [Online]. Available:
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170

30. CodeOp. (2023, March 24). 7 key backend programming languages explained. [Online]. Available:
https://codeop.tech/7-key-backend-programming-languages-explained/

DYNAMIC SYSTEM DEVELOPMENT FOR REAL-TIME LIGHT SPECTRA ACQUISITION
FOR OPTICAL BIOSENSOR APPLICATIONS IN PYTHON

107

31. Chocolatey Software. (n.d.). Chocolatey - the package manager for Windows. [Online]. Available:
https://chocolatey.org/

32. Gerend, J. (2023, February 3). CD. Microsoft. [Online]. Available:
https://learn.microsoft.com/en-us/windows-server/administration/windows-
commands/cd

33. GeeksforGeeks. (2021, June 29). Difference between Terminal, Console, Shell, and Command
Line. [Online]. Available:
https://www.geeksforgeeks.org/difference-between-terminal-console-shell-and-
command-line/

34. Ocean Insight. (n.d.). Glossary on Spectroscopy and Technical terms | Ocean Insight. [Online].
Available:
https://www.oceaninsight.com/knowledge-hub/glossary/

35. Proaki, J. G., & Manolakis, D. G. (2007). Digital signal processing: Principles, algorithms and
applications. Pearson Education.

36. The MathWorks, Inc. (n.d.). Zero-phase digital filtering - MATLAB filtfilt- MathWorks.
[Online]. Available:
https://la.mathworks.com/help/signal/ref/filtfilt.html?lang=en

37. NumPy Team. (2023, September 16). NumPy. [Online]. Available:
https://numpy.org/

38. The SciPy Community. (2024, April 3). SciPy documentation. [Online]. Available:
https://docs.scipy.org/doc/scipy/index.html

39. Semmlow, J. (2005). Circuits, systems, and signals for bioengineers: A MATLAB-based
introduction. Academic Press.

40. Hagan, M. T., Demuth, H. B., Beale, M. H., & Jesús, O. D. (2014). Neural network design.
Martin Hagan.

41. Date, S. (2022, March 21). The complete guide to R-squared, adjusted R-squared and pseudo-R-
squared. Medium. [Online]. Available:
https://towardsdatascience.com/the-complete-guide-to-r-squared-adjusted-r-squared-
and-pseudo-r-squared-4136650fc06c

42. Zheng, Q.-W., Lingping, K., Jeng-Shyang, P., & Wei-Min, W. (2024). A novel discrete
artificial bee colony algorithm combined with adaptive filtering to extract fetal
electrocardiogram signals. Expert Systems with Applications, 247, 123173.
https://doi.org/10.1016/j.eswa.2024.123173

RESEARCH ADVANCES IN NANOSCIENCES, MICRO AND NANOTECHNOLOGIES. VOLUME 5 108

43. Li, C., Deng, H., Yin, S., Wang, C., & Zhu, Y. (2023). sEMG signal filtering study using
synchrosqueezing wavelet transform with differential evolution optimized threshold.
Results in Engineering, 18, 101150.
https://doi.org/10.1016/j.rineng.2023.101150

44. Sehrish, B., Aqsa, T., Ijaz, K., Maham, L., Silvana, A., Hongxia, Z., & Akhtar, H. (2024).
A review of nanophotonic structures in optofluidic biosensors for food safety and
analysis. Trends in Food Science & Technology, 147, 104428.
https://doi.org/10.1016/j.tifs.2024.104428

45. Alemayehu, G. K., Abebe, B. G., Alemu, K. H., Tamirat, A. D., Mulubirhan, D., &
Habtamu, D. M. (2023). Optoplasmonic biosensor for lung cancer telediagnosis: Design
and simulation analysis. Sensors International, 4, 100232.
https://doi.org/10.1016/j.sintl.2023.100232

46. Domínguez García, V., & Ramírez Durán, N. (2017). Temas selectos de biomedicina en Ciencias
de la Salud. Ediciones Eón/Universidad Autónoma del Estado de México.

47. Katey, B., Voiculescu, I., Penkova, A. N., & Untaroiu, A. (2023). A review of biosensors
and their applications. ASME Open Journal of Engineering, 2, 020201.
https://doi.org/10.1115/1.4063500

48. Solís Tinoco, V. I., Lechuga, L. M., Sepúlveda, B., & Jiménez Jiménez, D. (2016).
Development of integrated plasmomechanical sensors in microfluidic devices for live
cell analysis. [Art]. Universitat Autònoma de Barcelona.

49. Bakr, A. T., Qussay, A.-J., Surjeet, C., Yousif, A. M., Sarvesh, R., Vishal, C., & Arsad,
N. (2024). State-of-the-art telemodule-enabled intelligent optical nano-biosensors for
proficient SARS-CoV-2 monitoring. Microchemical Journal, 197, 109774.
https://doi.org/10.1016/j.microc.2023.109774

50. IBM. (2024, April 8). What is Industry 4.0 and how does it work? [Online]. Available:
https://www.ibm.com/topics/industry-4-0

51. Ocean Insight. (2015). FLAME Scientific-Grade Spectrometer: Installation and Operation
Manual.

